Finitely Additive Measures in Number Theory

Charles L. Samuels

Christopher Newport University

April 27, 2024

<ロト < 部ト < 書ト < 書ト 差 うへで 1/20

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Primes

Since I am a number theorist, I care almost exclusively about primes.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Primes

Since I am a number theorist, I care almost exclusively about primes. You'll (occasionally) hear number theorists use other words and phrases such as the following:

- irreducible
- prime ideal
- maximal ideal
- place

Primes

Since I am a number theorist, I care almost exclusively about primes. You'll (occasionally) hear number theorists use other words and phrases such as the following:

- irreducible
- prime ideal
- maximal ideal
- place

We use these words to make it appear that we're studying other things. They are all some analog of prime.

Primes

Some questions about primes for us to think about today:

1. A number field is a field K which is a finite extension of \mathbb{Q} . What do primes look like in K?

Primes

Some questions about primes for us to think about today:

A number field is a field K which is a finite extension of Q.
 What do primes look like in K? For instance, consider the field

$$\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}.$$

What are the primes in $\mathbb{Q}[i]$?

Primes

Some questions about primes for us to think about today:

A number field is a field K which is a finite extension of Q.
 What do primes look like in K? For instance, consider the field

$$\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}.$$

What are the primes in $\mathbb{Q}[i]$? Certainly 2 isn't prime since it can be factored in the "integers" as 2 = (1 + i)(1 - i).

Primes

Some questions about primes for us to think about today:

A number field is a field K which is a finite extension of Q.
 What do primes look like in K? For instance, consider the field

$$\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}.$$

What are the primes in $\mathbb{Q}[i]$? Certainly 2 isn't prime since it can be factored in the "integers" as 2 = (1 + i)(1 - i).

2. Let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of \mathbb{Q} , i.e., $\overline{\mathbb{Q}}$ is a smallest field containing the roots of all polynomials with rational coefficients.

Primes

Some questions about primes for us to think about today:

A number field is a field K which is a finite extension of Q.
 What do primes look like in K? For instance, consider the field

$$\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}.$$

What are the primes in $\mathbb{Q}[i]$? Certainly 2 isn't prime since it can be factored in the "integers" as 2 = (1 + i)(1 - i).

- 2. Let $\overline{\mathbb{Q}}$ be a fixed algebraic closure of \mathbb{Q} , i.e., $\overline{\mathbb{Q}}$ is a smallest field containing the roots of all polynomials with rational coefficients.
 - What do primes look like in $\overline{\mathbb{Q}}$?
 - Does it even make sense to speak of primes here?
 - If so, how many primes should I expect to see?

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on Fields

Remarkably, absolute values are an effective way to address both questions simultaneously.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on Fields

Remarkably, absolute values are an effective way to address both questions simultaneously.

Let F be a field.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on Fields

Remarkably, absolute values are an effective way to address both questions simultaneously.

Let F be a field. An absolute value on F is a function

$$|\cdot|: F \to [0, \infty)$$
 which satisfies the following properties:
1. $|x| = 0$ if and only if $x = 0$
2. $|xy| = |x| \cdot |y|$ for all $x, y \in F$
3. $|x + y| \le |x| + |y|$ for all $x, y \in F$ (Triangle Inequality).

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

The Trivial Absolute Value

Every field field has at least one absolute value given by

$$|x|_0 = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0. \end{cases}$$

This is called the *trivial absolute value*.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

The Trivial Absolute Value

Every field field has at least one absolute value given by

$$|x|_0 = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0. \end{cases}$$

This is called the *trivial absolute value*.

• If *F* is a finite field, then the trivial absolute value is the only absolute value on *F*.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

The Trivial Absolute Value

Every field field has at least one absolute value given by

$$|x|_0 = \begin{cases} 0 & \text{if } x = 0\\ 1 & \text{if } x \neq 0. \end{cases}$$

This is called the *trivial absolute value*.

- If *F* is a finite field, then the trivial absolute value is the only absolute value on *F*.
- Otherwise, we can expect to see many other types.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

If $|\cdot|$ is an absolute value on F, then there is a trivial way to create a new absolute value.

Places

If $|\cdot|$ is an absolute value on F, then there is a trivial way to create a new absolute value. Specifically, let $0<\theta<1$ and define

 $||x|| = |x|^{\theta}$ for all $x \in F$.

If $|\cdot|$ is an absolute value on F, then there is a trivial way to create a new absolute value. Specifically, let $0 < \theta < 1$ and define

 $||x|| = |x|^{\theta}$ for all $x \in F$.

When creating new absolute values on a field, we want to avoid this silly technique.

If $|\cdot|$ is an absolute value on F, then there is a trivial way to create a new absolute value. Specifically, let $0 < \theta < 1$ and define

 $||x|| = |x|^{\theta}$ for all $x \in F$.

When creating new absolute values on a field, we want to avoid this silly technique.

Two absolute values || · || and | · | are called *equivalent* if there exists θ > 0 such that ||x|| = |x|^θ for all x ∈ F.

If $|\cdot|$ is an absolute value on F, then there is a trivial way to create a new absolute value. Specifically, let $0 < \theta < 1$ and define

 $||x|| = |x|^{\theta}$ for all $x \in F$.

When creating new absolute values on a field, we want to avoid this silly technique.

- Two absolute values || · || and | · | are called *equivalent* if there exists θ > 0 such that ||x|| = |x|^θ for all x ∈ F.
- An equivalence class of non trivial absolute values on *F* is called a *place* of *F*.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on \mathbb{Q}

We can build non-trivial places of $\ensuremath{\mathbb{Q}}$ in two ways:

Primes and Places Prime Counting in Q

Primes and Their Analog Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on $\mathbb Q$

We can build non-trivial places of $\ensuremath{\mathbb{Q}}$ in two ways:

• The usual absolute value is given by

$$|x|_{\infty} = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0. \end{cases}$$

Absolute Values on $\mathbb Q$

We can build non-trivial places of $\ensuremath{\mathbb{Q}}$ in two ways:

• The usual absolute value is given by

$$|x|_{\infty} = egin{cases} x & ext{if } x \geq 0 \ -x & ext{if } x < 0. \end{cases}$$

• If p is prime, then each non-zero rational number x may be expressed in the form $x = p^{\alpha}y$, where y has no factors of p.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on $\mathbb Q$

We can build non-trivial places of $\ensuremath{\mathbb{Q}}$ in two ways:

• The usual absolute value is given by

$$|x|_{\infty} = egin{cases} x & ext{if } x \geq 0 \ -x & ext{if } x < 0. \end{cases}$$

 If p is prime, then each non-zero rational number x may be expressed in the form x = p^ay, where y has no factors of p. Then the p-adic absolute value is defined by

$$|x|_{p} = \begin{cases} 0 & \text{if } x = 0\\ p^{-\alpha} & \text{if } x \neq 0. \end{cases}$$

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on $\mathbb Q$

We can build non-trivial places of $\ensuremath{\mathbb{Q}}$ in two ways:

• The usual absolute value is given by

$$|x|_{\infty} = egin{cases} x & ext{if } x \geq 0 \ -x & ext{if } x < 0. \end{cases}$$

If p is prime, then each non-zero rational number x may be expressed in the form x = p^ay, where y has no factors of p. Then the p-adic absolute value is defined by

$$|x|_{p} = \begin{cases} 0 & \text{if } x = 0\\ p^{-\alpha} & \text{if } x \neq 0. \end{cases}$$

It is possible to prove that none of the above absolute values are equivalent.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on \mathbb{Q}

Theorem 1 (Ostrowski).

Every absolute value on \mathbb{Q} is equivalent to one of the following:

(i) the trivial absolute value $|\cdot|_0$

(ii) the usual absolute value $|\cdot|_{\infty}$

(iii) the p-adic absolute value $|\cdot|_p$ for some prime p.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on $\mathbb Q$

Theorem 1 (Ostrowski).

Every absolute value on \mathbb{Q} is equivalent to one of the following:

(i) the trivial absolute value $|\cdot|_0$

(ii) the usual absolute value $|\cdot|_{\infty}$

(iii) the p-adic absolute value $|\cdot|_p$ for some prime p.

As a result of this theorem, $\{\infty,2,3,5,7,\ldots\}$ is the complete list of places of $\mathbb Q.$

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Absolute Values on $\mathbb Q$

Theorem 1 (Ostrowski).

Every absolute value on \mathbb{Q} is equivalent to one of the following:

(i) the trivial absolute value $|\cdot|_0$

(ii) the usual absolute value $|\cdot|_{\infty}$

(iii) the p-adic absolute value $|\cdot|_p$ for some prime p.

As a result of this theorem, $\{\infty,2,3,5,7,\ldots\}$ is the complete list of places of $\mathbb Q.$

We no longer think of a prime as an element of $\mathbb{Z},$ but rather, we interpret it as a place of $\mathbb{Q}.$

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Number Fields

Suppose now that K is a number field.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Number Fields

Suppose now that K is a number field.

Each place v of K restricts to a unique place p = p_v of Q. In this case, we say that v divides p and write v | p.

Number Fields

Suppose now that K is a number field.

- Each place v of K restricts to a unique place p = p_v of Q. In this case, we say that v divides p and write v | p.
- There are only finitely many places of *K* that divide each place of \mathbb{Q} .

Number Fields

Suppose now that K is a number field.

- Each place v of K restricts to a unique place p = p_v of Q. In this case, we say that v divides p and write v | p.
- There are only finitely many places of *K* that divide each place of \mathbb{Q} .

We can organize the places of K as the following disjoint union:

$$\{ \text{Places of } K \} = \bigcup_{p} \{ \text{Places of } K \text{ dividing } p \}$$

where p runs over the primes and ∞ .

(日)

Number Fields

Suppose now that K is a number field.

- Each place v of K restricts to a unique place p = pv of Q. In this case, we say that v divides p and write v | p.
- There are only finitely many places of *K* that divide each place of \mathbb{Q} .

We can organize the places of K as the following disjoint union:

$$\{ \text{Places of } K \} = \bigcup_{p} \{ \text{Places of } K \text{ dividing } p \}$$

where p runs over the primes and ∞ . This should be interpreted as a description of the primes of K.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

The places of $\overline{\mathbb{Q}}$ have a more exotic behavior.

<ロト<部ト<単ト<単ト<単ト<単ト<単ト<単ト<10/20

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

The places of $\overline{\mathbb{Q}}$ have a more exotic behavior. Thankfully, Allcock and Vaaler (2009) gave us a useful way to study them.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

The places of $\overline{\mathbb{Q}}$ have a more exotic behavior. Thankfully, Allcock and Vaaler (2009) gave us a useful way to study them.

• Let Y denote the set of all places of $\overline{\mathbb{Q}}$.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

The places of $\overline{\mathbb{Q}}$ have a more exotic behavior. Thankfully, Allcock and Vaaler (2009) gave us a useful way to study them.

- Let Y denote the set of all places of $\overline{\mathbb{Q}}$.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

The places of $\overline{\mathbb{Q}}$ have a more exotic behavior. Thankfully, Allcock and Vaaler (2009) gave us a useful way to study them.

- Let Y denote the set of all places of $\overline{\mathbb{Q}}$.
- The collection of all sets of the form Y(K, v) forms a basis for a topology on Y.

Primes and Places Prime Counting in Q Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

Each set Y(K, v) is

- uncountable
- totally disconnected
- free of isolated points

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

Each set Y(K, v) is

- uncountable
- totally disconnected
- free of isolated points

These sets are homeomorphic to the Cantor set.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

(日)

11/20

Infinite Extensions

Each set Y(K, v) is

- uncountable
- totally disconnected
- free of isolated points

These sets are homeomorphic to the Cantor set. Therefore, the set

$$Y = \bigcup_p Y(\mathbb{Q}, p)$$

of places of $\overline{\mathbb{Q}}$ is a disjoint countable union of Cantor sets.

Primes and Their Analogs Places of Number Fields Places of $\overline{\mathbb{Q}}$

Infinite Extensions

Each set Y(K, v) is

- uncountable
- totally disconnected
- free of isolated points

These sets are homeomorphic to the Cantor set. Therefore, the set

$$Y = \bigcup_p Y(\mathbb{Q}, p)$$

of places of $\overline{\mathbb{Q}}$ is a disjoint countable union of Cantor sets. As with number fields, the above discussion should be seen as a description of the primes of $\overline{\mathbb{Q}}$.

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

<ロト < 同ト < ヨト < ヨト

12/20

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x.

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x. Alternatively,

 $x = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, \qquad \Omega(x) = r_1 + r_2 + \cdots + r_k.$

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x. Alternatively,

 $x = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, \qquad \Omega(x) = r_1 + r_2 + \cdots + r_k.$

As we now have an interpretation of prime in $\overline{\mathbb{Q}},$ maybe we can extend Ω to $\overline{\mathbb{Q}}.$

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x. Alternatively,

 $x = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, \qquad \Omega(x) = r_1 + r_2 + \cdots + r_k.$

As we now have an interpretation of prime in $\overline{\mathbb{Q}}$, maybe we can extend Ω to $\overline{\mathbb{Q}}$. There are some obstacles:

 The ring of integers in Q doesn't have unique factorization into primes. It doesn't have factorization into primes at all.

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x. Alternatively,

 $x = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, \qquad \Omega(x) = r_1 + r_2 + \cdots + r_k.$

As we now have an interpretation of prime in $\overline{\mathbb{Q}}$, maybe we can extend Ω to $\overline{\mathbb{Q}}$. There are some obstacles:

- The ring of integers in Q doesn't have unique factorization into primes. It doesn't have factorization into primes at all.
- While we have provided an analog of primes for Q
 , that set is uncountable. So what exactly does a prime counting homomorphism count?

The Prime Counting Homomorphism

Definition.

For each rational number x, we let $\Omega(x)$ be net the number of (not necessarily distinct) prime factors of x. Alternatively,

 $x = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}, \qquad \Omega(x) = r_1 + r_2 + \cdots + r_k.$

As we now have an interpretation of prime in $\overline{\mathbb{Q}}$, maybe we can extend Ω to $\overline{\mathbb{Q}}$. There are some obstacles:

- The ring of integers in Q doesn't have unique factorization into primes. It doesn't have factorization into primes at all.
- While we have provided an analog of primes for Q
 , that set is uncountable. So what exactly does a prime counting homomorphism count?

We can gain some insight by doing a little measure theory on Y.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

Rings of Sets

We shall fix a set S of places of \mathbb{Q} and let

$$X = \{y \in Y : y \mid p \text{ for some } p \in S\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

13/20

Rings of Sets

We shall fix a set S of places of \mathbb{Q} and let

$$X = \{y \in Y : y \mid p ext{ for some } p \in S\}$$
 .

A non-empty collection of subsets \mathcal{R} of X is called a *ring of sets* if for all $A, B \in \mathcal{R}$ we have

(i) $A \cup B \in \mathcal{R}$ (ii) $A \setminus B \in \mathcal{R}$

Rings of Sets

We shall fix a set S of places of $\mathbb Q$ and let

$$X = \{y \in Y : y \mid p \text{ for some } p \in S\}$$
.

A non-empty collection of subsets \mathcal{R} of X is called a *ring of sets* if for all $A, B \in \mathcal{R}$ we have

(i)
$$A \cup B \in \mathcal{R}$$

(ii)
$$A \setminus B \in \mathcal{R}$$

It follows from these assumptions that $\emptyset \in \mathcal{R}$, and from De Morgan's laws, that $A \cap B \in \mathcal{R}$.

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

The Ring of Finite Unions

Consider the collection of ordered pairs

 $\mathcal{J} = \{ (K, v) : [K : \mathbb{Q}] < \infty, v \text{ divides a place in } S \}.$

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

The Ring of Finite Unions

Consider the collection of ordered pairs

 $\mathcal{J} = \{ (K, v) : [K : \mathbb{Q}] < \infty, \ v \text{ divides a place in } S \}.$

Let \mathcal{R} be the collection of all finite unions of the sets Y(K, v), where $(K, v) \in \mathcal{J}$.

The Ring of Finite Unions

Consider the collection of ordered pairs

 $\mathcal{J} = \{ (K, v) : [K : \mathbb{Q}] < \infty, \ v \text{ divides a place in } S \}.$

Let \mathcal{R} be the collection of all finite unions of the sets Y(K, v), where $(K, v) \in \mathcal{J}$.

• \mathcal{R} is precisely the collection of open compact subsets of X.

The Ring of Finite Unions

Consider the collection of ordered pairs

 $\mathcal{J} = \{ (K, v) : [K : \mathbb{Q}] < \infty, v \text{ divides a place in } S \}.$

Let \mathcal{R} be the collection of all finite unions of the sets Y(K, v), where $(K, v) \in \mathcal{J}$.

- \mathcal{R} is precisely the collection of open compact subsets of X.
- \mathcal{R} is a ring of sets on X.

Finitely Additive Measures

A map $\mu: \mathcal{R} \to \mathbb{R}$ is called a *measure* on \mathcal{R} if

- (i) $\mu(\emptyset) = 0$
- (ii) If $A, B \in \mathcal{R}$ are disjoint sets then $\mu(A \cup B) = \mu(A) + \mu(B)$.

Finitely Additive Measures

A map $\mu: \mathcal{R} \to \mathbb{R}$ is called a *measure* on \mathcal{R} if

- (i) $\mu(\emptyset) = 0$
- (ii) If $A, B \in \mathcal{R}$ are disjoint sets then $\mu(A \cup B) = \mu(A) + \mu(B)$.

My definition of measure might be a bit different from definitions you've seen in the past. For example, your definition might

- be defined only on a σ -algebra
- require countable additivity
- require $\mu(A) \ge 0$ for all $A \in \mathcal{R}$.
- permit values of $\pm\infty$

Finitely Additive Measures

- A map $\mu: \mathcal{R} \to \mathbb{R}$ is called a *measure* on \mathcal{R} if
 - (i) $\mu(\emptyset) = 0$
- (ii) If $A, B \in \mathcal{R}$ are disjoint sets then $\mu(A \cup B) = \mu(A) + \mu(B)$.

My definition of measure might be a bit different from definitions you've seen in the past. For example, your definition might

- be defined only on a σ -algebra
- require countable additivity
- require $\mu(A) \ge 0$ for all $A \in \mathcal{R}$.
- $\bullet\,$ permit values of $\pm\infty$

If you want more precision, you might refer to my definition as a finite-valued finitely-additive signed measure on \mathcal{R} .

Extensions of Ω

Equipped with this definition of measure, we can create many extensions of Ω to $\overline{\mathbb{Q}}$ using the following easy steps:

1. Let $S = \{2, 3, 5, 7, 11, \ldots\}$ and let X be the set of places of $\overline{\mathbb{Q}}$ that divide a place in S.

Equipped with this definition of measure, we can create many extensions of Ω to $\overline{\mathbb{Q}}$ using the following easy steps:

- 1. Let $S = \{2, 3, 5, 7, 11, \ldots\}$ and let X be the set of places of $\overline{\mathbb{Q}}$ that divide a place in S.
- 2. Select a measure μ on X such that $\mu(Y(\mathbb{Q}, p)) = -1$ for all $p \in S$.

Equipped with this definition of measure, we can create many extensions of Ω to $\overline{\mathbb{Q}}$ using the following easy steps:

- 1. Let $S = \{2, 3, 5, 7, 11, \ldots\}$ and let X be the set of places of $\overline{\mathbb{Q}}$ that divide a place in S.
- 2. Select a measure μ on X such that $\mu(Y(\mathbb{Q}, p)) = -1$ for all $p \in S$.
- 3. Let K be a number field and let S_K be the set of places of K dividing a place in S.

Equipped with this definition of measure, we can create many extensions of Ω to $\overline{\mathbb{Q}}$ using the following easy steps:

- 1. Let $S = \{2, 3, 5, 7, 11, \ldots\}$ and let X be the set of places of $\overline{\mathbb{Q}}$ that divide a place in S.
- 2. Select a measure μ on X such that $\mu(Y(\mathbb{Q}, p)) = -1$ for all $p \in S$.
- 3. Let K be a number field and let S_K be the set of places of K dividing a place in S.

Given a non-zero point $\alpha \in K$, we define

$$\Omega(\alpha) = \sum_{v \in S_{\mathcal{K}}} \frac{\log |\alpha|_{v}}{\log p_{v}} \cdot \mu(Y(\mathcal{K}, v)).$$

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of $\boldsymbol{\Omega}$

Extensions of Ω

On a superficial glance, the definition of Ω appears to depend on ${\cal K}.$

On a superficial glance, the definition of Ω appears to depend on ${\cal K}.$ But:

The finite additivity assumption about μ ensures that Ω(α) remains unchanged if K is replaced with a different number field containing α.

On a superficial glance, the definition of Ω appears to depend on ${\cal K}.$ But:

- The finite additivity assumption about μ ensures that Ω(α) remains unchanged if K is replaced with a different number field containing α.
- Therefore, $\Omega : \overline{\mathbb{Q}}^{\times} \to \mathbb{Q}$ is a well-defined group homomorphism that depends only on μ .

On a superficial glance, the definition of Ω appears to depend on ${\cal K}.$ But:

- The finite additivity assumption about μ ensures that Ω(α) remains unchanged if K is replaced with a different number field containing α.
- Therefore, $\Omega : \overline{\mathbb{Q}}^{\times} \to \mathbb{Q}$ is a well-defined group homomorphism that depends only on μ .
- If $\alpha \in \mathbb{Q}^{ imes}$ then we may write $\alpha = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and we find

$$\Omega(\alpha) = \sum_{i=1}^k \frac{\log p_i^{-r_i}}{\log p_i} \cdot (-1) = \sum_{i=1}^k r_i.$$

On a superficial glance, the definition of Ω appears to depend on ${\cal K}.$ But:

- The finite additivity assumption about μ ensures that Ω(α) remains unchanged if K is replaced with a different number field containing α.
- Therefore, $\Omega : \overline{\mathbb{Q}}^{\times} \to \mathbb{Q}$ is a well-defined group homomorphism that depends only on μ .
- If $\alpha \in \mathbb{Q}^{ imes}$ then we may write $\alpha = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ and we find

$$\Omega(\alpha) = \sum_{i=1}^k \frac{\log p_i^{-r_i}}{\log p_i} \cdot (-1) = \sum_{i=1}^k r_i.$$

Hence, our new definition of $\Omega(\alpha)$ agrees with our previous definition when $\alpha \in \mathbb{Q}$.

Computations Using $\boldsymbol{\Omega}$

The group homomorphism property is useful for computing $\Omega(\alpha)$ when $\alpha \notin \mathbb{Q}$.

The group homomorphism property is useful for computing $\Omega(\alpha)$ when $\alpha \notin \mathbb{Q}$.

• To find $\Omega(\sqrt{2})$:

$$\Omega(\sqrt{2}) = \frac{1}{2} \cdot \left(\Omega(\sqrt{2}) + \Omega(\sqrt{2})\right) = \frac{1}{2} \cdot \Omega(2) = \frac{1}{2}$$

regardless of the choice of μ .

The group homomorphism property is useful for computing $\Omega(\alpha)$ when $\alpha \notin \mathbb{Q}$.

• To find $\Omega(\sqrt{2})$:

$$\Omega(\sqrt{2}) = \frac{1}{2} \cdot \left(\Omega(\sqrt{2}) + \Omega(\sqrt{2})\right) = \frac{1}{2} \cdot \Omega(2) = \frac{1}{2}$$

regardless of the choice of μ .

• To find $\Omega(1+i)$:

$$\Omega(1+i) + \Omega(1-i) = \Omega(2) = 1.$$

The group homomorphism property is useful for computing $\Omega(\alpha)$ when $\alpha \notin \mathbb{Q}$.

• To find $\Omega(\sqrt{2})$:

$$\Omega(\sqrt{2}) = \frac{1}{2} \cdot \left(\Omega(\sqrt{2}) + \Omega(\sqrt{2})\right) = \frac{1}{2} \cdot \Omega(2) = \frac{1}{2}$$

regardless of the choice of μ .

• To find $\Omega(1+i)$:

$$\Omega(1+i) + \Omega(1-i) = \Omega(2) = 1.$$

We need information about μ to compute $\Omega(1+i)$.

The group homomorphism property is useful for computing $\Omega(\alpha)$ when $\alpha \notin \mathbb{Q}$.

• To find $\Omega(\sqrt{2})$:

$$\Omega(\sqrt{2}) = \frac{1}{2} \cdot (\Omega(\sqrt{2}) + \Omega(\sqrt{2})) = \frac{1}{2} \cdot \Omega(2) = \frac{1}{2}$$

regardless of the choice of μ .

• To find $\Omega(1+i)$:

$$\Omega(1+i) + \Omega(1-i) = \Omega(2) = 1.$$

We need information about μ to compute $\Omega(1+i)$.

 There is a unique measure λ that causes Ω to give equal values to all pairs of Galois conjugates over Q. Using this measure

$$\Omega(1+i) = \Omega(1-i) = \frac{1}{2}.$$

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

An Vector Space Related to \mathbb{Q}

This connection between measures and Ω is a special case of a more general result.

An Vector Space Related to \mathbb{Q}

This connection between measures and Ω is a special case of a more general result.

Let $\overline{\mathbb{Z}}$ be the ring of algebraic integers.

An Vector Space Related to \mathbb{Q}

This connection between measures and $\boldsymbol{\Omega}$ is a special case of a more general result.

Let $\overline{\mathbb{Z}}$ be the ring of algebraic integers. Then quotient space

$$\mathcal{V}:=\overline{\mathbb{Q}}^{\times}/\overline{\mathbb{Z}}^{\times}$$

is a vector space over $\ensuremath{\mathbb{Q}}$ with addition and scalar multiplication given by

$$(lpha,eta)\mapsto lphaeta$$
 and $(r,lpha)=lpha^r.$

An Vector Space Related to \mathbb{Q}

This connection between measures and $\boldsymbol{\Omega}$ is a special case of a more general result.

Let $\overline{\mathbb{Z}}$ be the ring of algebraic integers. Then quotient space

$$\mathcal{V}:=\overline{\mathbb{Q}}^{\times}/\overline{\mathbb{Z}}^{\times}$$

is a vector space over ${\mathbb Q}$ with addition and scalar multiplication given by

$$(lpha,eta)\mapsto lphaeta$$
 and $(r,lpha)=lpha^r.$

 $\Omega: \mathcal{V} \to \mathbb{Q}$ is a well-defined linear transformation, i.e., it is an element of the algebraic dual of \mathcal{V} .

An Vector Space Related to $\overline{\mathbb{Q}}$

This connection between measures and $\boldsymbol{\Omega}$ is a special case of a more general result.

Let $\overline{\mathbb{Z}}$ be the ring of algebraic integers. Then quotient space

$$\mathcal{V}:=\overline{\mathbb{Q}}^{ imes}/\overline{\mathbb{Z}}^{ imes}$$

is a vector space over ${\mathbb Q}$ with addition and scalar multiplication given by

$$(\alpha, \beta) \mapsto \alpha \beta$$
 and $(r, \alpha) = \alpha^r$.

 $\Omega:\mathcal{V}\to\mathbb{Q}\text{ is a well-defined linear transformation, i.e., it is an element of the algebraic dual of <math display="inline">\mathcal{V}.$

Theorem 2 (S, 2022).

The space of rational valued measures is isomorphic to the algebraic dual of \mathcal{V} .

The Prime Counting Homomorphism Finitely Additive Measures on Places Extensions of Ω

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

20/20

The End