

Exploring Probabilities in Bingo and Its Variations

Matt Gunn Advisor: Dr. Bhattacharya MAA Section Meeting

Outline

- Bingo Overview
- Development of Probability Distribution
- Simulation
- Analysis of a Single Board
- Analysis of Multi-board Games
- Variations of Bingo

Bingo Overview

- Modification of lottery games dating back several centuries
- Commonly played in social organizations, churches, and even casinos

Bingo Overview

- Each player buys a card (or multiple) with a 5x5 gid of squares
- Columns are labeled B, I, N, G, and O.
- The center square is the 'free space'
- Other squares filled with numbers (Column B: 1-15; Column I: 16-30; Column N: 31-45; Column G: 46-60; Column O: 61-75)
- A caller randomly selects numbers from 1-75 and players mark the appropriate square
- The objective is to be the first to mark an entire row, column, or diagonal

В	BAR VIEW	Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Development of Probability Distribution

- How many different ways are there to get bingo?
- Let's count

Development of Probability Distribution

- How many different ways are there to get bingo?
- Let's count
- Let B_i be the probability that the *i*th bingo is achieved on the kth call
- Thus, the cumulative probability distribution, B, for a bingo in less than k calls is

$$P(B \le k) = P\left(\bigcup_{i=1}^{12} (B_i \le k)\right)$$

• We can also think of B as the minimum of B_1, B_2, \dots, B_{12}

Inclusion- Exclusion Principle

• The general form for the probability of n events is given by:

 $\sum_{k} P(A_i \cap A_j \cap A_k) - \cdots$ k

- We need to determine the number of possible bingos based on the number of squares Number
- Let's start with the case of 4 squares covered ۲

s				Nu	mber o	of Bing	os (sub	oset size	e)			
	1	2	3	4	5	6	7	8	9	10	11	12

- We need to determine the number of possible bingos based on the number of squares Number
- Let's start with the case of 4 squares covered ۲

s		Number of Bingos (subset size)													
	1	2	3	4	5	6	7	8	9	10	11	12			
	4														

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Let's look at the case of 5 squares \bullet

covered

s		Number of Bingos (subset size)													
	1	2	3	4	5	6	7	8	9	10	11	12			
	4														

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Let's look at the case of 5 squares

covered

\$		Number of Bingos (subset size)														
0	1	2	3	4	5	6	7	8	9	10	11	12				
	4															
	8															

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Consider the case of 6 squares \bullet

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

covered

\$		Number of Bingos (subset size)														
0	1	2	3	4	5	6	7	8	9	10	11	12				
	4															
	8															

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Consider the case of 7 squares \bullet

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

covered

\$		Number of Bingos (subset size)														
0	1	2	3	4	5	6	7	8	9	10	11	12				
	4															
	8															

- We need to determine the number of possible bingos based on the number of squares Number
- Let's look at the case of 8 squares ۲

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

\$		Number of Bingos (subset size)														
0	1	2	3	4	5	6	7	8	9	10	11	12				
	4															
	8															

- We need to determine the number of possible bingos based on the number of squares Number
- Let's look at the case of 8 squares ۲

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

5		Number of Bingos (subset size)													
0	1	2	3	4	5	6	7	8	9	10	11	12			
	4														
	8														

- We need to determine the number of possible bingos based on the number of squares Number
- Let's look at the case of 8 squares ۲

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

5		Number of Bingos (subset size)													
0	1	2	3	4	5	6	7	8	9	10	11	12			
	4														
	8														

- We need to determine the number of possible bingos based on the number of squares Number
- Let's look at the case of 8 squares ۲

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

5		Number of Bingos (subset size)													
0	1	2	3	4	5	6	7	8	9	10	11	12			
	4														
	8														

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Let's look at the case of 8 squares ۲

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

5		Number of Bingos (subset size)													
0	1	2	3	4	5	6	7	8	9	10	11	12			
	4														
	8														

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Standard counting method given certain bingos
- 4 squares, 5 squares, subtract intersections
- 12-digit binary representation for bingos

covered

5		Number of Bingos (subset size)													
0	1	2	3	4	5	6	7	8	9	10	11	12			
	4														
	8														

- We need to determine the number of possible bingos based on the number of squares Number of squares
- Continue this pattern for the rest of the table
- The probability of completing any set of *n* squares

in	В		11	G	0	≤ 75:
	5	25			C	(5-n)
	13	27	$P(S_n)$	$k \leq k$	$=\frac{C}{C}$	$\frac{(-n)}{(75)}$.
	6	24				. <i>k</i> /
	3	21	37	52	61	
	14	17	32	46	70	

covered

s	Number of Bingos (subset size)												
	1	2	3	4	5	6	7	8	9	10	11	12	
	4												
	8												
		30											
		24											
		12											
			48										
			104										
			48	8									
			12	148									
			8	152	8								
				145	120	2							
				32	232	8							
					312	136	4						
				8	48	304	24						
				2	62	256	182	10					
					8	192	264	56	•				
						12	268	228	36	16			
					2	14	8 42	128	96	10	10	1	
					2	14	42	13	88	50	12	1	
	12	66	220	495	792	924	792	495	220	66	12	1	

Probability Distribution

Our probability distribution then becomes

$$P(B \le k) = P\left(\bigcup_{i=1}^{12} (B_i \le k)\right)$$

- *a_{ni}* represents the entry from the table
 corresponding to *n* covered squares in the *i*th
 column
- From this equation we can calculate a probability distribution for the number of calls (k) to complete a bingo

k	5	10	15	20	25	30	35	40	45	50	55	60	65
$P(B \leq k)$.00002	.0008	.0059	.0229	.0640	.1435	.2719	.4456	.6401	.8144	.9322	.9859	.9990

s	Number of Bingos (subset size)												
	1	2	3	4	5	6	7	8	9	10	11	12	
	4												
	8												
		20											
		30											
		12											
		14	48										
			104										
			48	8									
			12	148									
			8	152	8								
				145	120	2							
				32	232	8							
					312	136	4						
				8	48	304	24						
				2	62	256	182	10					
					8	192	264	56					
						12	268	228	36				
					•		8	128	96	16			
					2	14	42	73	88	50	12	1	
	12	66	220	495	792	924	792	495	220	66	12	1	

Generate a blank 5x5 board

- Generate a blank 5x5 board
- Randomly fill the board with the right numbers

В	1	N	G	0
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

- Generate a blank 5x5 board
- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence

В	1	N	G	0
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

- Generate a blank 5x5 board
- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match

10

В	1	N	G	0
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

- Generate a blank 5x5 board
- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match
- Continue calling and marking numbers until there is a bingo

В	I	N	G	0
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

24

- Generate a blank 5x5 board
- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match
- Continue calling and marking numbers until there is a bingo

В	I	N	G	0
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

29

Bingo

1	26	43	57	
10	29	39	49	
15	25	0	56	
7	17	42	48	
13	16	45	54	

• We will play 100,000 games of bingo to estimate a probability distribution

Calls	Simulation Probability	Theory Probability	Percent Error
	5 0.00002	0.00002	0.00%
1	0 0.00082	0.0008	2.50%
1.	5 0.0058	0.0059	1.69%
2	0 0.02282	0.0229	0.35%
2	5 0.06386	0.064	0.22%
3	0 0.14389	0.1435	0.27%
3.	5 0.27066	0.2719	0.46%
4	0 0.44817	0.4456	0.58%
4	5 0.64261	0.6401	0.39%
5	0 0.81485	0.8144	0.06%
5.	5 0.93307	0.9322	0.09%
6	0 0.98597	0.9859	0.01%
6	5 0.99903	0.999	0.00%

Multiple Boards

- In practice, bingo is normally played with many cards involved
- If we assume independence of m cards, then the probability of no bingo after k calls is

$$[1-P(B\leq k)]^m.$$

• Thus, the probability that the first bingo $B_{(1)}$ will occur in at most k calls is

$$P(B_{(1)} \le k) = 1 - [1 - P(B \le k)]$$

- However, the assumption of independence is not accurate, which makes the analysis substantially more difficult because of conditional probabilities
- This makes a simulation helpful to approximate the cumulative probability distribution

]‴

Multiple Board Simulation

- Generate *m* blank 5x5 boards
- Randomly fill each board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark each board if there is match
- Continue calling and marking numbers until there is a bingo

Multiple Board Simulation

We will play 100,000 games of bingo to estimate a probability distribution

	4	8	12	16	20	24	28	32	36	40	44
m=10	0.0000	0.0024	0.0198	0.0766	0.2059	0.4167	0.6691	0.8732	0.9725	0.9976	1.0000
m=50	0.0000	0.0121	0.0918	0.3172	0.6611	0.9212	0.9945	0.9999	1.0000	1.0000	1.0000
m=100	0.0000	0.0246	0.1704	0.5213	0.8745	0.9916	0.9999	1.0000	1.0000	1.0000	1.0000

Blackout

All squares must be covered

Calls		Frequency	Cumulative %
	51	4	0.00%
	53	1	0.01%
	55	7	0.01%
	57	25	0.04%
	59	65	0.10%
	61	153	0.26%
	63	369	0.62%
	65	937	1.56%
	67	2205	3.77%
	69	5100	8.87%
	71	11459	20.33%
	73	25443	45.77%
	75	54232	100.00%

В	-	Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

4 corners & Postage Stamp

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

_	IInrnprc	Postane Stamp
-		
5	0.0000	0.0000
0	0.0002	0.0002
5	0.0010	0.0010
0	0.0039	0.0039
5	0.0099	0.0106
0	0.0218	0.0221
5	0.0421	0.0433
0	0.0744	0.0749
5	0.1217	0.1223
0	0.1892	0.1893
5	0.2814	0.2812
0	0.4009	0.4009
5	0.5551	0.5551
0	0.7535	0.7532
5	1.0000	1.0000
	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	5 0.0000 0 0.0002 5 0.0010 0 0.0039 5 0.0099 0 0.0218 5 0.0421 0 0.0744 5 0.1217 0 0.1892 5 0.2814 0 0.4009 5 0.5551 0 0.7535 5 1.0000

В		Ν	G	0
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Larger Bingo Boards

Х	L	В	I	N	G	0
13	23	39	57	67	82	102
10	24	43	47	63	76	103
14	30	38	55	73	78	104
8	21	32	0	75	86	95
1	29	33	48	62	89	101
5	19	41	60	65	85	91
2	22	40	58	74	84	92

V	A
19	30
26	48
8	40
16	32
17	42
13	49
7	31
22	34
9	39

S	Т	В	I	N	G	0
63	107	119	147	163	206	243
75	92	132	157	174	210	236
74	101	117	160	186	215	225
80	93	127	142	183	203	235
71	98	0	151	168	208	218
61	95	131	149	177	202	228
57	99	122	150	176	207	239
62	94	125	139	179	205	221
78	86	111	137	182	212	226

Larger Bingo Boards

QUESTIONS?

References

Agard, David B., and Michael W. Shackleford. "A new look at the probabilities in Bingo." *The College Mathematics Journal*, vol. 33, no. 4, 2002, pp. 301–305,

https://doi.org/10.1080/07468342.2002.11921957.

- Mercer, Joseph O. "Some surprising probabilities from bingo." *The Mathematics Teacher*, vol. 86, no. 9, 1993, pp. 726–731, https://doi.org/10.5951/mt.86.9.0726.
- "Principle of Inclusion and Exclusion (PIE)." Brilliant Math & amp; Science Wiki, brilliant.org/wiki/principle-of-inclusion-andexclusion-pie/. Accessed 30 Nov. 2023.

"We've Always Got Your Number at Red Rock Bingo." *Redrockresort.Com*, www.redrockresort.com/play/bingo/. Accessed 30 Nov. 2023.

Bingo Board

В		N	G
5	25	39	60
13	27	43	55
6	24	free	54
3	21	37	52
14	17	32	46

Code

```
1 import numpy as np
 2 import seaborn as sns
 3
 4 def playBingo():
    # Make a Bingo Card
 5
   # Make an empty 5x5
 6
    card=np.zeros((5,5))
7
    # Loop over rows and columns
8
    for i in range(0,5):
 9
      for j in range(0,5):
10
        # Skip free space (position 2,2)
11
        if not(i==2 and j==2):
12
          # Generate a random number in the right interval
13
          num=np.random.randint((j*15)+1, (j*15)+16)
14
          # Keep generating numbers until we find one that is not in the Bingo board already
15
          while num in card:
16
            num=np.random.randint((j*15)+1,(j*15)+16)
17
          # Add the unique number to the board
18
19
          card[i,j]=num
```


Code

21	# Generate the call order for the
22	# Make an array of the integers 1
23	uncalledNums=np.linspace(1,75,75)
24	<pre>uncalledNums=list(uncalledNums)</pre>
25	<pre>callOrder=np.zeros(75)</pre>
26	for i in range(0,75):
27	<pre># Randomly pick an index of in</pre>
28	idx=np.random.randint(0,75-i)
29	<pre>callOrder[i]=uncalledNums.pop(i</pre>

e numbers 1-75

uncalledNums

idx)


```
# Call each number and mark the board untill bingo
bingo= False
calls=0
while not bingo and calls < 75:
  num=callOrder[calls]
  idx=np.where(card==num)
  card[idx]=0
  # Determine if there is Bingo
  if calls>=4: # at least 4 calls are required for any Bingo
    # Check for diagonal Bingo
   if card[0,0]+card[1,1]+card[2,2]+card[3,3]+card[4,4]==0:
      bingo=True
    if card[0,4]+card[1,3]+card[2,2]+card[3,1]+card[4,0]==0:
      bingo=True
    # Check is the sum of a column or row is zero
   i=0 # index for column/row
    while not bingo and i<5: # Stop checking if bingo or checked all indexes
     if sum(card[i,:])==0 or sum(card[:,i])==0: # Check sum of ith column and row
        bingo=True
     i=i+1
```

```
calls=calls+1
```

return calls

Code

56 def main():

- n=100000 57
- 58 results=np.zeros(n)
- for i in range(0,n): 59

```
results[i]=playBingo()
60
```

```
61 #print(results)
```

```
np.savetxt("results.csv", results, delimiter=",")
62
```

```
63 main()
```


