

Exploring Probabilities in Bingo and Its Variations

Matt Gunn

Advisor: Dr. Bhattacharya
MAA Section Meeting

Outline

- Bingo Overview
- Development of Probability Distribution
- Simulation
- Analysis of a Single Board
- Analysis of Multi-board Games
- Variations of Bingo

Bingo Overview

- Modification of lottery games dating back several centuries
- Commonly played in social organizations, churches, and even casinos

Bingo Overview

- Each player buys a card (or multiple) with a 5×5 gid of squares
- Columns are labeled B, I, N, G, and O.
- The center square is the 'free space'
- Other squares filled with numbers (Column B: 1-15; Column I: 16-30; Column N: 31-45; Column G: 46-60; Column 0: 61-75)
- A caller randomly selects numbers from 1-75 and players mark the appropriate square

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

- The objective is to be the first to mark an entire row, column, or diagonal

Development of Probability Distribution

- How many different ways are there to get bingo?
- Let's count

B	1	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24		54	74
3	21	37	52	61
14	17	32	46	70

Development of Probability Distribution

- How many different ways are there to get bingo?
- Let's count
- Let B_{i} be the probability that the i th bingo is achieved on the k th call
- Thus, the cumulative probability distribution, B, for a bingo in less than k calls is

$$
P(B \leq k)=P\left(\bigcup_{i=1}^{12}\left(B_{i} \leq k\right)\right)
$$

- We can also think of B as the minimum of $B_{1}, B_{2}, \ldots, B_{12}$

Inclusion- Exclusion Principle

- The general form for the probability of n events is given by:

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{n} A_{i}\right)= & \sum_{i} P\left(A_{i}\right)-\sum_{i<j} P\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} P\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots \\
& +(-1)^{n+1} P\left(A_{1} \cap A_{2} \cdots \cap A_{n}\right)
\end{aligned}
$$

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's start with the case of 4 squares covered

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24		54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's start with the case of 4 squares covered

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 5 squares

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Number of squares covered	Number of Bingos (subset size)											
	1	2	3	4	5	6	7	8	9	10	11	12
4	4											
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
Total												

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 5 squares

B	I	G	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Number of squares covered	Number of Bingos (subset size)											
	1	2	3	4	5	6	7	8	9	10	11	12
4	4											
5	8											
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
Total												

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Consider the case of 6 squares

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Consider the case of 7 squares

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 8 squares

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 8 squares

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 8 squares

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 8 squares

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Let's look at the case of 8 squares

B	I	G	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Standard counting method given certain bingos
- 4 squares, 5 squares, subtract intersections
- 12-digit binary representation for bingos

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Size of Bingo Subsets

- We need to determine the number of possible bingos based on the number of squares
- Continue this pattern for the rest of the table
- The probability of completing any set of n squares

E	1	is	G	0
5	25	$P\left(S_{n} \leq k\right)=\frac{\binom{75-n}{k-n}}{\binom{75}{k}} .$		
13	27			
6	24			
3	21	37	52	61
14	17	32	46	70

Number of squares covered	Number of Bingos (subset size)											
	1	2	3	4	5	6	7	8	9	10	11	12
4	4											
5	8											
6												
7												
8		30										
9		24										
10		12										
11			48									
12			104									
13			48	8								
14			12	148								
15			8	152	8							
16				145	120	2						
17				32	232	8						
18					312	136	4					
19				8	48	304	24					
20				2	62	256	182	10				
21					8	192	264	56				
22						12	268	228	36			
23							8	128	96	16		
24					2	14	42	73	88	50	12	1
Total	12	66	220	495	792	924	792	495	220	66	12	1

Probability Distribution

- Our probability distribution then becomes

$$
P(B \leq k)=P\left(\bigcup_{i=1}^{12}\left(B_{i} \leq k\right)\right)
$$

- $a_{n i}$ represents the entry from the table corresponding to n covered squares in the i th column
- From this equation we can calculate a probability distribution for the number of calls (k) to complete a bingo

k	5	10	15	20	25	30	35	40	45	50	55	60	65
$P(B \leq k)$.00002	.0008	.0059	.0229	.0640	.1435	.2719	.4456	.6401	.8144	.9322	.9859	.9990

Python Simulation

- Generate a blank 5×5 board

Python Simulation

- Generate a blank 5×5 board
- Randomly fill the board with the right numbers

B	I	N	G	O
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

Python Simulation

- Generate a blank 5×5 board
- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence

B	I	N	G	O
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

Python Simulation

- Generate a blank 5×5 board

10

- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match

B	I	N	G	
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

Python Simulation

- Generate a blank 5×5 board

24

- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match
- Continue calling and marking numbers until there is a bingo

B	I	N	G	
1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

Python Simulation

- Generate a blank 5×5 board

29

- Randomly fill the board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark the board if there is match
- Continue calling and marking numbers until there is a bingo

Bingo!

1	26	43	57	61
10	29	39	49	75
15	25	0	56	66
7	17	42	48	73
13	16	45	54	63

Python Simulation

- We will play 100,000 games of bingo to estimate a probability distribution

Multiple Boards

- In practice, bingo is normally played with many cards involved
- If we assume independence of m cards, then the probability of no bingo after k calls is

$$
[1-P(B \leq k)]^{m}
$$

- Thus, the probability that the first bingo $B_{(1)}$ will occur in at most k calls is

$$
P\left(B_{(1)} \leq k\right)=1-[1-P(B \leq k)]^{m}
$$

- However, the assumption of independence is not accurate, which makes the analysis substantially more difficult because of conditional probabilities
- This makes a simulation helpful to approximate the cumulative probability distribution

Multiple Board Simulation

- Generate m blank 5×5 boards
- Randomly fill each board with the right numbers
- Generate a random sequence of unique numbers 1-75 to serve as the call sequence
- Call a number, and mark each board if there is match
- Continue calling and marking numbers until there is a bingo

Multiple Board Simulation

- We will play 100,000 games of bingo to estimate a probability distribution

	4	8	12	16	20	24	28	32	36	40	44
$m=10$	0.0000	0.0024	0.0198	0.0766	0.2059	0.4167	0.6691	0.8732	0.9725	0.9976	1.0000
$m=50$	0.0000	0.0121	0.0918	0.3172	0.6611	0.9212	0.9945	0.9999	1.0000	1.0000	1.0000
$m=100$	0.0000	0.0246	0.1704	0.5213	0.8745	0.9916	0.9999	1.0000	1.0000	1.0000	1.0000

Probability of Bingo before k Calls

Blackout

- All squares must be covered

Calls	Frequency	Cumulative \%
51	4	0.00\%
53	1	0.01\%
55	7	0.01\%
57	25	0.04\%
59	65	0.10\%
61	153	0.26\%
63	369	0.62\%
65	937	1.56\%
67	2205	3.77\%
69	5100	8.87\%
71	11459	20.33\%
73	25443	45.77\%
75	54232	100.00\%

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

4 corners \& Postage Stamp

B	I	N	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

| Calls | 4 Corners | |
| ---: | ---: | ---: | Postage Stamp 9 0.0000

B	I	N	G	O
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Larger Bingo Boards

| X | L | B | I | N | G | O |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 23 | 39 | 57 | 67 | 82 | 102 |
| 10 | 24 | 43 | 47 | 63 | 76 | 103 |
| 14 | 30 | 38 | 55 | 73 | 78 | 104 |
| 8 | 21 | 32 | 0 | 75 | 86 | 95 |
| 1 | 29 | 33 | 48 | 62 | 89 | 101 |
| 5 | 19 | 41 | 60 | 65 | 85 | 91 |
| 2 | 22 | 40 | 58 | 74 | 84 | 92 |

V	A		S	T	I	N	G		O
19	30	63	107	119	147	163	206	243	
26	48	75	92	132	157	174	210	236	
8	40	74	101	117	160	186	215	225	
16	32	80	93	127	142	183	203	235	
17	42	71	98	0	151	168	208	218	
13	49	61	95	131	149	177	202	228	
7	31	57	99	122	150	176	207	239	
22	34	62	94	125	139	179	205	221	
9	39	78	86	111	137	182	212	226	

Larger Bingo Boards

QUESTIONS?

References

Agard, David B., and Michael W. Shackleford. "A new look at the probabilities in Bingo." The College Mathematics Journal, vol. 33, no. 4, 2002, pp. 301-305, https://doi.org/10.1080/07468342.2002.11921957.
Mercer, Joseph O. "Some surprising probabilities from bingo." The Mathematics Teacher, vol. 86, no. 9, 1993, pp. 726-731, https://doi.org/10.5951/mt.86.9.0726.
"Principle of Inclusion and Exclusion (PIE)." Brilliant Math \& Science Wiki, brilliant.org/wiki/principle-of-inclusion-and-exclusion-pie/. Accessed 30 Nov. 2023.
"We've Always Got Your Number at Red Rock Bingo." Redrockresort.Com, www.redrockresort.com/play/bingo/. Accessed 30 Nov. 2023.

Bingo Board

				I
5	N	O	O	
5	25	39	60	75
13	27	43	55	68
6	24	free	54	74
3	21	37	52	61
14	17	32	46	70

Code

```
import numpy as np
import seaborn as sns
def playBingo():
    # Make a Bingo Card
    # Make an empty 5x5
    card=np.zeros((5,5))
    # Loop over rows and columns
    for i in range(0,5):
        for j in range(0,5):
            # Skip free space (position 2,2)
            if not(i==2 and j==2):
                # Generate a random number in the right interval
                num=np.random.randint ((j*15)+1, (j*15)+16)
                # Keep generating numbers until we find one that is not in the Bingo board already
                while num in card:
                    num=np.random.randint ((j*15)+1,(j*15)+16)
                # Add the unique number to the board
            card[i,j]=num
```


Code

```
2 1
2 2
23
```


Generate the call order for the numbers

```
# Generate the call order for the numbers
# Make an array of the integers 1-75
# Make an array of the integers 1-75
uncalledNums=np.linspace(1,75,75)
uncalledNums=np.linspace(1,75,75)
uncalledNums=list(uncalledNums)
uncalledNums=list(uncalledNums)
callOrder=np.zeros(75)
callOrder=np.zeros(75)
for i in range(0,75):
for i in range(0,75):
    # Randomly pick an index of in uncalledNums
    # Randomly pick an index of in uncalledNums
    idx=np.random.randint(0,75-i)
    idx=np.random.randint(0,75-i)
    callOrder[i]=uncalledNums.pop(idx)
```

 callOrder[i]=uncalledNums.pop(idx)
    ```

\section*{Code}
\# Call each number and mark the board untill bingo
bingo= False
calls=0
while not bingo and calls < 75:
num=callorder[calls]
idx=np.where(card==num)
card[idx]=0
\# Determine if there is Bingo
if calls>=4: \# at least 4 calls are required for any Bingo \# Check for diagonal Bingo
if \(\operatorname{card}[0,0]+\operatorname{card}[1,1]+\operatorname{card}[2,2]+\operatorname{card}[3,3]+\operatorname{card}[4,4]==0\) : bingo=True
if \(\operatorname{card}[0,4]+\operatorname{card}[1,3]+\operatorname{card}[2,2]+\operatorname{card}[3,1]+\operatorname{card}[4,0]==0\) : bingo=True
\# Check is the sum of a column or row is zero
i=0 \# index for column/row
while not bingo and i<5: \# Stop checking if bingo or checked all indexes if \(\operatorname{sum}(\operatorname{card}[i,:])==0\) or \(\operatorname{sum}(\operatorname{card}[:, i])==0\) : \# Check sum of ith column and row bingo=True \(i=i+1\)
calls=calls+1
return calls

\section*{Code}
```

56 def main():
57 n=100000
5 8 ~ r e s u l t s = n p . z e r o s (n)
59 for i in range(0,n):
60 results[i]=playBingo()
61 \#print(results)
6 2 ~ n p . s a v e t x t (" r e s u l t s . c s v " , ~ r e s u l t s , ~ d e l i m i t e r = " , ")
6 3 main()

```
```

