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Maxwell’s Equations for ℝ4

∇ ∙ 𝐵 = 0 ∇ × 𝐸 +
𝜕𝐵

𝜕𝑡
= 0

∇ ∙ 𝐸 = 𝜌 ∇ × 𝐵 −
𝜕𝐸

𝜕𝑡
= റ𝑗



Differential Forms

Recall that the directional derivative in ℝ𝑛 in the direction 𝑣 is 

∇𝑓 ∙ 𝑣 = 𝑣𝑓

The gradient ‘keeps track’ of the directional derivatives of 𝑓 in all 
directions. We want something that does the same thing on any 
manifold. This leads us to the idea of differential forms! 



1-forms
We define a 1-form to be a map on 
any manifold 𝑀

𝜔: Vect M ↦ 𝐶∞(𝑀)

that is linear over 𝐶∞(𝑀). 

We can think of a 1-form “eating” a 
vector and the spitting out the 
number of planes the vector pierces

The space of 1-forms is called Ω1(𝑀)



Exterior Derivative
We can now define the 1-form 𝑑𝑓, where 𝑣 ∈ Vect M and 𝑓 ∈
𝐶∞(𝑀) as: 

𝑑𝑓 𝑣 = 𝑣𝑓 1

We call 𝑑𝑓 the differential of 𝑓 or the exterior derivative of 𝑓. This is 
the analog of the gradient!

The below map is also called the differential, as it sends each 
function 𝑓 to its differential 𝑑𝑓.

𝑑: 𝐶∞ 𝑀 → Ω1 𝑀 2



Exterior Derivative

Let 𝑓, 𝑔 ∈ 𝐶∞ 𝑀 and 𝑣, 𝑤 ∈ Vect M . We can show that (1) really is 
a 1-form by checking linearity:  

𝑑𝑓 𝑣 + 𝑤 = 𝑣 + 𝑤 𝑓 = 𝑣𝑓 + 𝑤𝑓 = 𝑑𝑓(𝑣) + 𝑑𝑓(𝑤)

𝑑𝑓 𝑔𝑣 = 𝑔𝑣𝑓 = 𝑔𝑑𝑓(𝑣)

and that (2) satisfies the Leibniz law:

𝑑 𝑓𝑔 𝑣 = 𝑣 𝑓𝑔 = 𝑣 𝑓 𝑔 + 𝑣 𝑔 𝑓 = 𝑑𝑓 𝑣 𝑔 + 𝑑𝑔 𝑣 𝑓 = [𝑓𝑑𝑔 + 𝑔𝑑𝑓](𝑣)



Wedge product

Let 𝑉 be a vector space. We can 
generalize the multiplication of 
vectors with the exterior 
algebra over 𝑉, denoted by Λ𝑉, 
which is the algebra over 𝑉 with 
the operation 

𝑣 ∧ 𝑤 = −𝑤 ∧ 𝑣 for all 𝑣, 𝑤, ∈ 𝑉

𝑢

𝑣 𝑣 ∧ 𝑢



p-forms

By extension, we can form an algebra by taking all the linear 
combinations of formal products of the form

𝑣1 ∧ ⋯ ∧ 𝑣𝑛, 𝑣𝑖 ∈ 𝑉

Just like with 1-forms, p-forms are also a map eating a wedge 
product 𝑣1 ∧ ⋯ ∧ 𝑣𝑝 and spitting out some combination of 
projections of areas. 



𝛼

𝛼

𝛼

β

β

𝛾
1-form

2-form
𝛼 ∧ 𝛽

3-form
𝛼 ∧ 𝛽 ∧ 𝛾



Exterior Derivative of a p-form 

We define the exterior derivative, or differential, of a p-form as the 
unique set of maps 

𝑑: Ω𝑝 𝑀 → Ω𝑝+1(𝑀)

Such that the following properties hold:

1) 𝑑: Ω0 𝑀 → Ω1(𝑀) follows our previous definition

2) 𝑑 𝜔 + 𝜇 = 𝑑𝜔 + 𝑑𝜇 and 𝑑 𝑐𝜔 = 𝑐𝑑𝜔 ∀𝜔, 𝜇 ∈ Ω(𝑀) and 𝑐 ∈ ℝ

3) 𝑑 𝜔 ∧ 𝜇 = 𝑑𝜔 ∧ 𝜇 + −1 𝑝𝜔 ∧ 𝑑𝜇 ∀ 𝜔 ∈ Ω𝑝(𝑀) and 𝜇 ∈ Ω(𝑀)

4) 𝑑 𝑑𝜔 = 0 ∀ 𝜔 ∈ Ω(𝑀)



Then we can calculate 𝑑 of any differential form. For example, if we 
have 

𝑓𝑑𝑔 ∧ 𝑑ℎ
We can use the rules on the previous slide: 

𝑑 𝑓dg ∧ 𝑑ℎ = 𝑑𝑓 ∧ 𝑑𝑔 ∧ 𝑑ℎ + 𝑓 ∧ 𝑑 𝑑𝑔 ∧ 𝑑ℎ
= 𝑑𝑓 ∧ 𝑑𝑔 ∧ 𝑑ℎ + 𝑓𝑑 𝑑𝑔 ∧ 𝑑ℎ − 𝑓𝑑𝑔 ∧ 𝑑 𝑑ℎ
= 𝑑𝑓 ∧ 𝑑𝑔 ∧ 𝑑ℎ

This fits the map 𝑑: Ω2 𝑀 → Ω3(𝑀)



Succinctly, we can write the generalized operations as: 

- Gradient: 𝑑: Ω0 𝑀 → Ω1(𝑀)

- Curl: 𝑑: Ω1 𝑀 → Ω2 𝑀

- Divergence: 𝑑: Ω2 𝑀 → Ω3(𝑀)

The special cases that are used more commonly are when 𝑀 = ℝ3



Back to Maxwell’s Eq: the first two equations

Recall that the first two equations  on ℝ4 have the form:

∇ ∙ 𝐵 = 0 ∇ × 𝐸 +
𝜕𝐵

𝜕𝑡
= 0

Since we have generalized forms of the divergence and curl,  we can 
use these to rewrite the equations. 



The first two equations

The divergence becomes the exterior derivative on 2-forms on ℝ4 so 
we treat the magnetic field as a 2-form: 

𝐵 = 𝐵𝑥𝑑𝑦⋀𝑑𝑧 + 𝐵𝑦𝑑𝑧⋀𝑑𝑥 + 𝐵𝑧𝑑𝑥⋀𝑑𝑦

The curl becomes the exterior derivative on 1-forms on ℝ4, so we 
treat the electric field as a 1-form:  

𝐸 = 𝐸𝑥𝑑𝑥 + 𝐸𝑦𝑑𝑦 + 𝐸𝑧𝑑𝑧



The first two equations

Therefore, the first pair turns into: 

𝑑𝑠𝐵 = 0
𝜕𝑡𝐵 + 𝑑𝑠𝐸 = 0

where 𝑆 is some manifold we call ‘space’ and 𝑡 is time 



The first two equations

Then we can write the unified electromagnetic field 𝐹 as a 2 form on 
ℝ4: 

𝐹 = 𝐵 + 𝐸 ∧ 𝑑𝑡

We can also look at all components: 

𝐹 =
1

2
𝐹𝜇𝜈𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈 so,    𝐹𝜇𝜈 =

0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧

𝐸𝑥 0 𝐵𝑧 −𝐵𝑦

𝐸𝑦 −𝐵𝑧 0 𝐵𝑥

𝐸𝑧 𝐵𝑦 −𝐵𝑥 0



The first two equations

We can take the exterior derivative of the 2-form: 
𝑑𝐹 = 𝑑𝐵 + 𝑑𝐸 ∧ 𝑑𝑡

= 𝑑𝑠𝐵 + 𝑑𝑡 ∧ 𝜕𝑡𝐵 + 𝑑𝑠𝐸 + 𝑑𝑡 ∧ 𝜕𝑡𝐸 ∧ 𝑑𝑡
= 𝑑𝑠𝐵 + 𝜕𝑡𝐵 + 𝑑𝑠𝐸 ∧ 𝑑𝑡

Which results in 𝑑𝐹 = 0 since 
𝑑𝑠𝐵 = 0

𝜕𝑡𝐵 + 𝑑𝑠𝐸 = 0



Hence, we achieve a simple equation that encapsulates the first two 
equations: 

𝑑𝐹 = 0



Hodge Star Operator 

For this operator, we need a metric and an orientation. Let 𝑀 be an 
𝑛-dimensional oriented semi-Riemannian manifold. Then the inner 
product of two 𝑝 forms 𝜔 and 𝜇 on 𝑀 is a function ⟨𝜔, 𝜇⟩ on 𝑀.

In general, we define the Hodge star operator 
⋆: Ω𝑝 𝑀 → Ω 𝑛−𝑝(𝑀)

To be the unique linear map from 𝑝-forms to 𝑛 − 𝑝-forms such that 
∀𝜔, 𝜇 ∈ Ω𝑝(𝑀), 

𝜔 ∧⋆ 𝜇 = ⟨𝜔, 𝜇⟩vol

where vol is the volume form, defined by |𝑑𝑒𝑡𝑔𝜇𝜈|𝑑𝑥1 … 𝑑𝑥𝑛



Hodge Star Operator on basis elements of ℝ3

On the 0-form:
⋆ 1 = 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧

On 1-forms:

⋆ 𝑑𝑥 = 𝑑𝑦 ∧ 𝑑𝑧 ⋆ 𝑑𝑦 = 𝑑𝑧 ∧ 𝑑𝑥 ⋆ 𝑑𝑧 = 𝑑𝑥 ∧ 𝑑𝑦

On 2-forms:

⋆ 𝑑𝑦 ∧ 𝑑𝑧 = 𝑑𝑥 ⋆ 𝑑𝑧 ∧ 𝑑𝑥 = 𝑑𝑦 ⋆ 𝑑𝑥 ∧ 𝑑𝑦 = 𝑑𝑧

On the  3-form:
⋆ 𝑑𝑥 ∧ 𝑑𝑦 ∧ 𝑑𝑧 = 1



Hodge Star on differential forms in ℝ3

Let 𝜔 and 𝜇 be 1-forms
𝜔 = 𝜔𝑖𝑑𝑥𝑖 𝜇 = 𝜇𝑖𝑑𝑥𝑖

Recall that we need a metric and an orientation to define the Hodge 
Star operator. Using the standard metric, we obtain the 1-form

⋆ 𝜔 ∧ 𝜇 = 𝜔𝑦𝜇𝑧 − 𝜔𝑧𝜇𝑦 𝑑𝑥 + 𝜔𝑧𝜇𝑥 − 𝜔𝑥𝜇𝑧 𝑑𝑦 + 𝜔𝑥𝜇𝑦 − 𝜔𝑦𝜇𝑥 𝑑𝑧

This is exactly the cross product in ℝ3! 



Back to Maxwell’s Eq: the second two equations

Recall the Maxwell’s Equations: 

∇ ∙ 𝐵 = 0 ∇ × 𝐸 +
𝜕𝐵

𝜕𝑡
= 0

∇ ∙ 𝐸 = 𝜌 ∇ × 𝐵 −
𝜕𝐸

𝜕𝑡
= റ𝑗

We notice two main differences between the top two and the 
bottom two: 𝜌 and റ𝑗, and that 𝐵 maps to 𝐸 and 𝐸 maps to −𝐵.  

Keep this in mind for the next part. 



Recall…

Before looking at the general case, we will first consider 𝑀 as Minkowski
spacetime with a positive orientation and introduce the metric: 

𝜂 𝑣, 𝑤 = −𝑣0𝑤0 + 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3

so that we may define the Hodge star operator.  

Also, recall that 
𝐹 = 𝐵 + 𝐸 ∧ 𝑑𝑡

Is the electromagnetic field 



The RHS…

We can turn റ𝑗 into a 1-form: 
𝑗 = 𝑗1𝑑𝑥1 + 𝑗2𝑑𝑥2 + 𝑗3𝑑𝑥3

And then combine 𝜌 and റ𝑗 into a single vector field on M 
റ𝐽 = 𝜌𝜕0 + 𝑗1𝜕1 + 𝑗2𝜕2 + 𝑗3𝜕3

Which we can then turn into a 1-form called the current: 
𝐽 = 𝑗 − 𝜌𝑑𝑡



Taking the dual of 𝐹 amounts to: 
𝐸𝑖 ↦ −𝐵𝑖 𝐵𝑖 ↦ 𝐸𝑖

𝐹 = 𝐵 + 𝐸⋀𝑑𝑡

𝐹𝜇𝜈 =

0 −𝐸𝑥 −𝐸𝑦 −𝐸𝑧

𝐸𝑥 0 𝐵𝑧 −𝐵𝑦

𝐸𝑦 −𝐵𝑧 0 𝐵𝑥

𝐸𝑧 𝐵𝑦 −𝐵𝑥 0

⋆ 𝐹 =⋆ 𝐵 +⋆ (𝐸⋀𝑑𝑡)

(⋆ 𝐹)𝜇𝜈 =

0 𝐵𝑥 𝐵𝑦 𝐵𝑧

−𝐵𝑥 0 𝐸𝑧 −𝐸𝑦

−𝐵𝑦 −𝐸𝑧 0 𝐸𝑥

−𝐵𝑧 𝐸𝑦 −𝐸𝑥 0

The LHS…



However, now we have a 2-form on the LHS and a 1-form on the 
RHS. We can apply the exterior derivative 

𝑑: Ω𝑝 𝑀 → Ωp+1(M)

to the 2-form ⋆ 𝐹, so 𝑑 ⋆ 𝐹 ∈ Ω3 𝑀 . Now, remembering that 
⋆: Ω𝑝 𝑀 → Ω𝑛−𝑝 𝑀

Then ⋆ 𝑑 ⋆ 𝐹 ∈ Ω1(𝑀), which is exactly where we want to be! 



For the more general case

Assume that 𝑀 is any semi-Riemannian manifold that can be written as 
𝑀 = ℝ × 𝑆, where 𝑆 is space.  Also recall that 𝐹 = 𝐵 + 𝐸 ∧ 𝑑𝑡. From 
earlier, the first pair of equations is 

𝑑𝑠𝐵 = 0 𝜕𝑡𝐵 + 𝑑𝑠𝐸 = 0

Also suppose that the metric on S  is 3𝑔 and the metric on M is 
𝑔 = −𝑑𝑡2 + 3𝑔

Let ⋆𝑆 be the Hodge star operator on time dependent differential  
forms on S



Note that the second pair of equations 

∇ ∙ 𝐸 = 𝜌 ∇ × 𝐵 −
𝜕𝐸

𝜕𝑡
= റ𝑗

Can be written as 

⋆𝑆 𝑑𝑆 ⋆𝑆 𝐸 = 𝜌 and − 𝜕𝑡𝐸 +⋆𝑆 𝑑𝑠 ⋆𝑆 𝐵 = 𝑗



Then 
⋆ 𝐹 =⋆𝑆 𝐸 −⋆𝑆 𝐵 ∧ 𝑑𝑡

So, 
𝑑 ⋆ 𝐹 =⋆𝑆 𝜕𝑡𝐸 ∧ 𝑑𝑡 + 𝑑𝑆 ⋆𝑆 𝐸 − 𝑑𝑆 ⋆𝑆 𝐵 ∧ 𝑑𝑡

And 
⋆ 𝑑 ⋆ 𝐹 = −𝜕𝑡𝐸 −⋆𝑆 𝑑𝑆 ⋆𝑆 𝐸 ∧ 𝑑𝑡 +⋆𝑆 𝑑𝑆 ⋆𝑆 𝐵

Setting ⋆ 𝑑 ⋆ 𝐹 = 𝐽 gives 
⋆𝑆 𝑑𝑆 ⋆𝑆 𝐸 = 𝜌 𝑎𝑛𝑑 − 𝜕𝑡𝐸 +⋆𝑆 𝑑𝑠 ⋆𝑆 𝐵 = 𝑗

Which is exactly what we wanted! 



To summarize, we have 
𝑑𝐹 = 0 ⋆ 𝑑 ⋆ 𝐹 = 𝐽

for spacetime manifolds, where F is the electromagnetic field. 
However, as gauge theory deals with more general fields on 
spacetime, we have to define these fields and extend these 
equations. 



Bundles

A vector field 𝑣 on 𝑀 assigns to each point 
𝑝 ∈ 𝑀 a vector in the tangent plane of that 
point 𝑇𝑝𝑀. 

So instead of one fixed vector space, we 
have many vector spaces, which we call a 
‘bundle’

In order to write differential equations, we 
need to be able to compare vectors in 
different vector spaces. 



Bundles

A bundle is a structure containing a 
manifold 𝐸, a manifold 𝑀, and an onto 
map 𝜋: 𝐸 → 𝑀. 

We call 𝐸 the total space, 𝑀 the base 
space, and 𝜋 the projection map. 

For each point in p ∈ 𝑀, the space 

𝐸𝑝 = {𝑞 ∈ 𝐸: 𝜋 𝑞 = 𝑝} is called the 
fiber over 𝑝.   

𝐸 𝐸𝑝

𝜋

𝑀 𝑝



Vector Bundles 

We can have two manifolds 𝑀 and 
ℝ𝑛 such that 𝐸 can be expressed as 

𝐸 = 𝑀 × ℝ𝑛

𝐸 here is what is known as a vector 
bundle! 



Sections

Fields in physics are often described by 
‘sections’ of vector bundles, so when we 
talk about a general field, we need to talk 
about sections. 

A section of a bundle 𝜋: 𝐸 → 𝑀 is a 
function 𝑠: 𝑀 → 𝐸 such that for any 𝑝 ∈
𝑀, 

𝑠 𝑝 ∈ 𝐸𝑝

𝐸

𝑀 𝑝

𝑠(𝑝)

𝑠

𝜋



Sections

End(𝐸) denotes the set of all endomorphisms of a vector bundle 𝐸

Any section 𝑇 of End(𝐸) defines a map from 𝐸 to itself sending 𝑣 ∈
𝐸𝑝 to 𝑇 𝑝 𝑣 ∈ 𝐸𝑝. So, a section 𝑇 acts on a section s pointwise, 
which gives a new section 𝑇𝑠 of 𝐸

𝑇𝑠 𝑝 = 𝑇 𝑝 𝑠(𝑝)

Therefore, 𝑇 is a new function 
𝑇: Γ 𝐸 → Γ(𝐸)

Where Γ(𝐸) is the set of all sections of 𝐸



Connections

A connection 𝐷 on 𝑀 assigns a function 𝐷𝑣: Γ 𝐸 → Γ(𝐸) to each 
vector field 𝑣 on 𝑀 which satisfies the properties: 

𝐷𝑣 𝛼𝑠 = 𝛼𝐷𝑣𝑠
𝐷𝑣 𝑠 + 𝑡 = 𝐷𝑣𝑠 + 𝐷𝑣𝑡

𝐷𝑣 𝑓𝑠 = 𝑣 𝑓 𝑠 + 𝑓𝐷𝑣𝑠
𝐷𝑣+𝑤𝑠 = 𝐷𝑣𝑠 + 𝐷𝑤𝑠

𝐷𝑓𝑣𝑠 = 𝑓𝐷𝑣𝑠

For all 𝑣, 𝑠 ∈ Vect 𝑀 , 𝑠, 𝑡 ∈ Γ 𝐸 , 𝑓 ∈ 𝐶∞ 𝑀 , and all scalars 𝛼

We call 𝐷𝑣𝑠 the covariant derivative of 𝑠 in the direction 𝑣



Exterior Covariant Derivative

We define the exterior covariant derivative 𝑑𝐷 of a section 𝑠 of 𝐸 to 
be the 𝐸-valued 1-form 𝑑𝐷s such that 

𝑑𝐷𝑠 𝑣 = 𝐷𝑣𝑠

For any vector field 𝑣 on 𝑀. 

Note that this is just a generalization of our original exterior 
derivative 

𝑑𝑓 𝑣 = 𝑣𝑓



Curvature

The curvature is an operator acting on 
sections of E that measures the failure of 
covariant derivatives to commute. For two 
vector fields 𝑣 and 𝑤 on 𝑀, the curvature 
acting on a section 𝑠 is 

𝐹 𝑣, 𝑤 𝑠 = 𝐷𝑣𝐷𝑤𝑠 − 𝐷𝑤𝐷𝑣𝑠 − 𝐷 𝑣,𝑤 𝑠

The first two terms are [𝐷𝑣, 𝐷𝑤], which 
measures their failure to commute and 
− 𝐷 𝑣,𝑤 𝑠 measures the effect of a non-
vanishing Lie bracket, better shown in the 
figure

𝑤 𝑤

𝑣

𝑣 [𝑣, 𝑤]



Curvature

𝐹 𝑣, 𝑤 is a section of End(𝐸), so when we are working with 
coordinates on an open set, the ‘components’

𝐹𝜇𝜈 = 𝐹(𝜕𝜇 , 𝜕𝜈)

are sections of End(𝐸) over the open set. It turns out, we can view 
the curvature of the connection 𝐷 on 𝐸 as an End(𝐸)-valued 2-form, 

𝐹 =
1

2
𝐹𝜇𝜈𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈

The factor of 1/2 is there to account for the double counting that 
occurs from 𝐹𝜇𝜈 = −𝐹𝜈𝜇 and 𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈= −𝑑𝑥𝜈 ∧ 𝑑𝑥𝜇



The Yang-Mills Equation

Now that we have an analog for the exterior derivative on sections 
and a generalization for 𝐹, we can use a similar analysis as before 
and defining a Hodge star operator, which leads us to the Yang-Mills 
equation

⋆ 𝑑𝐷 ⋆ 𝐹 = 𝐽

This looks very similar to the second equation. In fact, the only 
difference is that we are are not restricted to any particular type of 
manifold, as we were earlier. 
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