Generalizations for Maxwell's Equations to Yang-Mills Equations

Abby Swanson
Mathematics/Physics Major
University of Mary Washington, Fredericksburg, VA 22401

Maxwell's Equations for \mathbb{R}^{4}

$$
\begin{array}{ll}
\nabla \cdot \vec{B}=0 & \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
\nabla \cdot \vec{E}=\rho & \nabla \times \vec{B}-\frac{\partial \vec{E}}{\partial t} \\
=\vec{J} &
\end{array}
$$

Differential Forms

Recall that the directional derivative in \mathbb{R}^{n} in the direction v is

$$
\nabla f \cdot v=v f
$$

The gradient 'keeps track' of the directional derivatives of f in all directions. We want something that does the same thing on any manifold. This leads us to the idea of differential forms!

1-forms

We define a 1 -form to be a map on any manifold M

$$
\omega: \operatorname{Vect}(\mathrm{M}) \mapsto C^{\infty}(M)
$$

that is linear over $C^{\infty}(M)$.

We can think of a 1-form "eating" a vector and the spitting out the number of planes the vector pierces

The space of 1 -forms is called $\Omega^{1}(M)$

Exterior Derivative

We can now define the 1 -form $d f$, where $v \in \operatorname{Vect(M)~and~} f \in$ $C^{\infty}(M)$ as:

$$
d f(v)=v f(1)
$$

We call $d f$ the differential of f or the exterior derivative of f. This is the analog of the gradient!

The below map is also called the differential, as it sends each function f to its differential $d f$.

$$
d: C^{\infty}(M) \rightarrow \Omega^{1}(M)(2)
$$

Exterior Derivative

Let $f, g \in C^{\infty}(M)$ and $v, w \in \operatorname{Vect}(\mathrm{M})$. We can show that (1) really is a 1-form by checking linearity:

$$
\begin{gathered}
d f(v+w)=(v+w) f=v f+w f=d f(v)+d f(w) \\
d f(g v)=g v f=g d f(v)
\end{gathered}
$$

and that (2) satisfies the Leibniz law:

$$
d(f g) v=v(f g)=v(f) g+v(g) f=d f(v) g+d g(v) f=[f d g+g d f](v)
$$

Wedge product

Let V be a vector space. We can generalize the multiplication of vectors with the exterior algebra over V, denoted by ΛV, which is the algebra over V with the operation
$v \wedge w=-w \wedge v$ for all $v, w, \in V$

p-forms

By extension, we can form an algebra by taking all the linear combinations of formal products of the form

$$
v_{1} \wedge \cdots \wedge v_{n}, v_{i} \in V
$$

Just like with 1 -forms, p -forms are also a map eating a wedge product $v_{1} \wedge \cdots \wedge v_{p}$ and spitting out some combination of projections of areas.

1-form

3-form
$\alpha \wedge \beta \wedge \gamma$

Exterior Derivative of a p-form

We define the exterior derivative, or differential, of a p-form as the unique set of maps

$$
d: \Omega^{p}(M) \rightarrow \Omega^{p+1}(M)
$$

Such that the following properties hold:

1) $d: \Omega^{0}(M) \rightarrow \Omega^{1}(M)$ follows our previous definition
2) $d(\omega+\mu)=d \omega+d \mu$ and $d(c \omega)=c d \omega \forall \omega, \mu \in \Omega(M)$ and $c \in \mathbb{R}$
3) $d(\omega \wedge \mu)=d \omega \wedge \mu+(-1)^{p} \omega \wedge d \mu \forall \omega \in \Omega^{p}(M)$ and $\mu \in \Omega(M)$
4) $d(d \omega)=0 \forall \omega \in \Omega(M)$

Then we can calculate d of any differential form. For example, if we have

$$
f d g \wedge d h
$$

We can use the rules on the previous slide:

$$
\begin{aligned}
d(f \operatorname{dg} \wedge d h) & =d f \wedge(d g \wedge d h)+f \wedge d(d g \wedge d h) \\
& =d f \wedge d g \wedge d h+f d(d g) \wedge d h-f d g \wedge d(d h) \\
& =d f \wedge d g \wedge d h
\end{aligned}
$$

This fits the map $d: \Omega^{2}(M) \rightarrow \Omega^{3}(M)$

Succinctly, we can write the generalized operations as:

- Gradient: $d: \Omega^{0}(M) \rightarrow \Omega^{1}(M)$
- Curl: $d: \Omega^{1}(M) \rightarrow \Omega^{2}(M)$
- Divergence: $d: \Omega^{2}(M) \rightarrow \Omega^{3}(M)$

The special cases that are used more commonly are when $M=\mathbb{R}^{3}$

Back to Maxwell's Eq: the first two equations

Recall that the first two equations on \mathbb{R}^{4} have the form:

$$
\nabla \cdot \vec{B}=0 \quad \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0
$$

Since we have generalized forms of the divergence and curl, we can use these to rewrite the equations.

The first two equations

The divergence becomes the exterior derivative on 2-forms on \mathbb{R}^{4} so we treat the magnetic field as a 2-form:

$$
B=B_{x} d y \wedge d z+B_{y} d z \wedge d x+B_{z} d x \wedge d y
$$

The curl becomes the exterior derivative on 1 -forms on \mathbb{R}^{4}, so we treat the electric field as a 1-form:

$$
E=E_{x} d x+E_{y} d y+E_{z} d z
$$

The first two equations

Therefore, the first pair turns into:

$$
\begin{gathered}
d_{s} B=0 \\
\partial_{t} B+d_{s} E=0
\end{gathered}
$$

where S is some manifold we call 'space' and t is time

The first two equations

Then we can write the unified electromagnetic field F as a 2 form on \mathbb{R}^{4} :

$$
F=B+E \wedge d t
$$

We can also look at all components:

$$
F=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu} \text { so, } \quad F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right)
$$

The first two equations

We can take the exterior derivative of the 2-form:

$$
\begin{aligned}
d F & =d B+d E \wedge d t \\
& =d_{s} B+d t \wedge \partial_{t} B+\left(d_{s} E+d t \wedge \partial_{t} E\right) \wedge d t \\
& =d_{s} B+\left(\partial_{t} B+d_{s} E\right) \wedge d t
\end{aligned}
$$

Which results in $d F=0$ since

$$
\begin{gathered}
d_{s} B=0 \\
\partial_{t} B+d_{s} E=0
\end{gathered}
$$

Hence, we achieve a simple equation that encapsulates the first two equations:

$$
d F=0
$$

Hodge Star Operator

For this operator, we need a metric and an orientation. Let M be an n-dimensional oriented semi-Riemannian manifold. Then the inner product of two p forms ω and μ on M is a function $\langle\omega, \mu\rangle$ on M. In general, we define the Hodge star operator

$$
\star: \Omega^{p}(M) \rightarrow \Omega^{n-p}(M)
$$

To be the unique linear map from p-forms to $n-p$-forms such that $\forall \omega, \mu \in \Omega^{p}(M)$,

$$
\omega \wedge \star \mu=\langle\omega, \mu\rangle \mathrm{vol}
$$

where vol is the volume form, defined by $\sqrt{\left|\operatorname{det} g_{\mu \nu}\right|} d x^{1} \ldots d x^{n}$

Hodge Star Operator on basis elements of \mathbb{R}^{3}

On the 0-form:

$$
\star 1=d x \wedge d y \wedge d z
$$

On 1-forms:

$$
\star d x=d y \wedge d z \quad \star d y=d z \wedge d x \quad \star d z=d x \wedge d y
$$

On 2-forms:

$$
\star d y \wedge d z=d x \quad \star d z \wedge d x=d y \quad \star d x \wedge d y=d z
$$

On the 3 -form:

$$
\star d x \wedge d y \wedge d z=1
$$

Hodge Star on differential forms in \mathbb{R}^{3}

Let ω and μ be 1 -forms

$$
\omega=\omega_{i} d x^{i} \quad \mu=\mu_{i} d x^{i}
$$

Recall that we need a metric and an orientation to define the Hodge Star operator. Using the standard metric, we obtain the 1 -form

$$
\star(\omega \wedge \mu)=\left(\omega_{y} \mu_{z}-\omega_{z} \mu_{y}\right) d x+\left(\omega_{z} \mu_{x}-\omega_{x} \mu_{z}\right) d y+\left(\omega_{x} \mu_{y}-\omega_{y} \mu_{x}\right) d z
$$

This is exactly the cross product in \mathbb{R}^{3} !

Back to Maxwell's Eq: the second two equations

Recall the Maxwell's Equations:

$$
\begin{array}{ll}
\nabla \cdot \vec{B}=0 & \nabla \times \vec{E}+\frac{\partial \vec{B}}{\partial t}=0 \\
\nabla \cdot \vec{E}=\rho & \nabla \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=\vec{J}
\end{array}
$$

We notice two main differences between the top two and the bottom two: ρ and $\vec{\jmath}$, and that \vec{B} maps to \vec{E} and \vec{E} maps to $-\vec{B}$.

Keep this in mind for the next part.

Recall...

Before looking at the general case, we will first consider M as Minkowski spacetime with a positive orientation and introduce the metric:

$$
\eta(v, w)=-v^{0} w^{0}+v^{1} w^{1}+v^{2} w^{2}+v^{3} w^{3}
$$

so that we may define the Hodge star operator.

Also, recall that

$$
F=B+E \wedge d t
$$

Is the electromagnetic field

The RHS...

We can turn \vec{J} into a 1-form:

$$
j=j_{1} d x^{1}+j_{2} d x^{2}+j_{3} d x^{3}
$$

And then combine ρ and $\vec{\jmath}$ into a single vector field on M

$$
\vec{J}=\rho \partial_{0}+j^{1} \partial_{1}+j^{2} \partial_{2}+j^{3} \partial_{3}
$$

Which we can then turn into a 1-form called the current:

$$
J=j-\rho d t
$$

The LHS...

Taking the dual of F amounts to:

$$
\begin{gathered}
E_{i} \mapsto-B_{i} \quad B_{i} \mapsto E_{i} \\
F=B+E \wedge d t \\
F_{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & B_{z} & -B_{y} \\
E_{y} & -B_{z} & 0 & B_{x} \\
E_{z} & B_{y} & -B_{x} & 0
\end{array}\right) \xrightarrow{\star}=\star B+\star(E \wedge d t) \\
(\star F)_{\mu \nu}=\left(\begin{array}{cccc}
0 & B_{x} & B_{y} & B_{z} \\
-B_{x} & 0 & E_{z} & -E_{y} \\
-B_{y} & -E_{z} & 0 & E_{x} \\
-B_{z} & E_{y} & -E_{x} & 0
\end{array}\right)
\end{gathered}
$$

However, now we have a 2 -form on the LHS and a 1 -form on the RHS. We can apply the exterior derivative

$$
d: \Omega^{p}(M) \rightarrow \Omega^{\mathrm{p}+1}(\mathrm{M})
$$

to the 2 -form $\star F$, so $d \star F \in \Omega^{3}(M)$. Now, remembering that

$$
\star: \Omega^{p}(M) \rightarrow \Omega^{n-p}(M)
$$

Then $\star d \star F \in \Omega^{1}(M)$, which is exactly where we want to be!

For the more general case

Assume that M is any semi-Riemannian manifold that can be written as $M=\mathbb{R} \times S$, where S is space. Also recall that $F=B+E \wedge d t$. From earlier, the first pair of equations is

$$
d_{s} B=0 \quad \partial_{t} B+d_{s} E=0
$$

Also suppose that the metric on S is ${ }^{3} g$ and the metric on M is

$$
g=-d t^{2}+{ }^{3} g
$$

Let \star_{s} be the Hodge star operator on time dependent differential forms on S

Note that the second pair of equations

$$
\nabla \cdot \vec{E}=\rho \quad \nabla \times \vec{B}-\frac{\partial \vec{E}}{\partial t}=\vec{\jmath}
$$

Can be written as

$$
\star_{S} d_{S} \star_{S} E=\rho \quad \text { and } \quad-\partial_{t} E+\star_{S} d_{S} \star_{S} B=j
$$

Then

$$
\star F=\star_{S} E-\star_{S} B \wedge d t
$$

So,

$$
d \star F=\star_{S} \partial_{t} E \wedge d t+d_{S} \star_{S} E-d_{S} \star_{S} B \wedge d t
$$

And

$$
\star d \star F=-\partial_{t} E-\star_{S} d_{S} \star_{S} E \wedge d t+\star_{S} d_{S} \star_{S} B
$$

Setting $\star d \star F=J$ gives

$$
\star_{S} d_{S} \star_{S} E=\rho \quad \text { and } \quad-\partial_{t} E+\star_{S} d_{s} \star_{S} B=j
$$

Which is exactly what we wanted!

To summarize, we have

$$
d F=0 \quad \star d \star F=J
$$

for spacetime manifolds, where F is the electromagnetic field. However, as gauge theory deals with more general fields on spacetime, we have to define these fields and extend these equations.

Bundles

A vector field v on M assigns to each point $p \in M$ a vector in the tangent plane of that point $T_{p} M$.

So instead of one fixed vector space, we have many vector spaces, which we call a 'bundle'

In order to write differential equations, we need to be able to compare vectors in different vector spaces.

Bundles

A bundle is a structure containing a manifold E, a manifold M, and an onto $\operatorname{map} \pi: E \rightarrow M$.

We call E the total space, M the base space, and π the projection map.

For each point in $\mathrm{p} \in M$, the space $E_{p}=\{q \in E: \pi(q)=p\}$ is called the fiber over p.

Vector Bundles

We can have two manifolds M and \mathbb{R}^{n} such that E can be expressed as

$$
E=M \times \mathbb{R}^{n}
$$

E here is what is known as a vector bundle!

Sections

Fields in physics are often described by 'sections' of vector bundles, so when we talk about a general field, we need to talk about sections.

A section of a bundle $\pi: E \rightarrow M$ is a function s : $M \rightarrow E$ such that for any $p \in$
 M,

$$
s(p) \in E_{p}
$$

Sections

$\operatorname{End}(E)$ denotes the set of all endomorphisms of a vector bundle E

Any section T of $\operatorname{End}(E)$ defines a map from E to itself sending $v \in$ E_{p} to $T(p) v \in E_{p}$. So, a section T acts on a section s pointwise, which gives a new section Ts of E

$$
(T s)(p)=T(p) s(p)
$$

Therefore, T is a new function

$$
T: \Gamma(E) \rightarrow \Gamma(E)
$$

Where $\Gamma(E)$ is the set of all sections of E

Connections

A connection D on M assigns a function $D_{v}: \Gamma(E) \rightarrow \Gamma(E)$ to each vector field v on M which satisfies the properties:

$$
\begin{aligned}
D_{v}(\alpha s) & =\alpha D_{v} s \\
D_{v}(s+t) & =D_{v} s+D_{v} t \\
D_{v}(f s) & =v(f) s+f D_{v} s \\
D_{v+w} s & =D_{v} s+D_{w} s \\
D_{f v} s & =f D_{v} s
\end{aligned}
$$

For all $v, s \in \operatorname{Vect}(M), s, t \in \Gamma(E), f \in C^{\infty}(M)$, and all scalars α We call $D_{v} s$ the covariant derivative of s in the direction v

Exterior Covariant Derivative

We define the exterior covariant derivative d_{D} of a section s of E to be the E-valued 1-form $d_{D} s$ such that

$$
d_{D} s(v)=D_{v} s
$$

For any vector field v on M.

Note that this is just a generalization of our original exterior derivative

$$
d f(v)=v f
$$

Curvature

The curvature is an operator acting on sections of E that measures the failure of covariant derivatives to commute. For two vector fields v and w on M, the curvature acting on a section s is

$$
F(v, w) s=D_{v} D_{w} s-D_{w} D_{v} s-D_{[v, w]} s
$$

The first two terms are [D_{v}, D_{w}], which measures their failure to commute and $-D_{[v, w]} S$ measures the effect of a nonvanishing Lie bracket, better shown in the figure

Curvature

$F(v, w)$ is a section of $\operatorname{End}(E)$, so when we are working with coordinates on an open set, the 'components'

$$
F_{\mu \nu}=F\left(\partial_{\mu}, \partial_{\nu}\right)
$$

are sections of $\operatorname{End}(E)$ over the open set. It turns out, we can view the curvature of the connection D on E as an $\operatorname{End}(E)$-valued 2 -form,

$$
F=\frac{1}{2} F_{\mu \nu} d x^{\mu} \wedge d x^{\nu}
$$

The factor of $1 / 2$ is there to account for the double counting that occurs from $F_{\mu \nu}=-F_{v \mu}$ and $d x^{\mu} \wedge d x^{\nu}=-d x^{\nu} \wedge d x^{\mu}$

The Yang-Mills Equation

Now that we have an analog for the exterior derivative on sections and a generalization for F, we can use a similar analysis as before and defining a Hodge star operator, which leads us to the Yang-Mills equation

$$
\star d_{D} \star F=J
$$

This looks very similar to the second equation. In fact, the only difference is that we are are not restricted to any particular type of manifold, as we were earlier.

