Prime Factors and Divisibility of Sums of Powers of Fibonacci Numbers
Christopher Newport University

Spirit Karcher

April 14, 2018
If a pair of rabbits is placed in an enclosed area, how many pairs of rabbits will there be after a year if we have the following assumptions:

- Every month a pair of rabbits produces another pair
- Rabbits begin to bear young two months after their birth and
- None of the rabbits die
If a pair of rabbits is placed in an enclosed area, how many pairs of rabbits will there be after a year if we have the following assumptions:

- Every month a pair of rabbits produces another pair
- Rabbits begin to bear young two months after their birth and
- None of the rabbits die

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
Research Questions

- Are there patterns in the prime factors of the sum $F_n^2 + F_{n-2}^2$ for all $n \geq 2$?

- Are there different patterns in the prime factors of the sum $F_n^3 + F_{n-2}^3$ for all $n \geq 2$?
The Recursive Definition:

\[F_{n+2} = F_{n+1} + F_n, \text{ for } n \in \mathbb{N} \text{ with } F_1 = F_2 = 1 \]
Modular Arithmetic

Definition: Let n be a positive integer and let a and b be any integers. We say that a is *congruent* to b mod n written, $a \equiv b \mod n$, if a and b have the same remainder when divided by n.

Properties:

$$(a \mod n) + (b \mod n) \equiv (a + b) \mod n$$

$$(a \mod n)(b \mod n) \equiv (ab) \mod n$$
Preliminaries

Table: F_n under mod 2

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>34</td>
<td>55</td>
<td>89</td>
</tr>
<tr>
<td>F_n mod 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>F_n^2 mod 2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Preliminaries

Definition: A divisibility sequence is an integer sequence, \(\{a_n\} \), indexed by positive integers \(n \), such that if \(m \) divides \(n \) then \(a_m \) divides \(a_n \).

Example: \(F_3 = 2 \) so when, \(n = 3k \), \(2 \) divides \(F_3^k \).

Proposition 1. \(F_3 = 2 \) divides every third Fibonacci number.

2. \(F_4 = 3 \) divides every fourth Fibonacci number.

3. \(F_5 = 5 \) divides every fifth Fibonacci number.
Definition: A divisibility sequence is an integer sequence, \(\{a_n\} \), indexed by positive integers \(n \), such that if \(m \) divides \(n \) then \(a_m \) divides \(a_n \).

Example: \(F_3 = 2 \) so when, \(n = 3k \), 2 divides \(F_{3k} \).
Definition: A *divisibility sequence* is an integer sequence, \(\{a_n\} \), indexed by positive integers \(n \), such that if \(m \) divides \(n \) then \(a_m \) divides \(a_n \).

Example: \(F_3 = 2 \) so when, \(n = 3k \), 2 divides \(F_{3k} \)

Proposition

1. \(F_3 = 2 \) divides every third Fibonacci number.
2. \(F_4 = 3 \) divides every fourth Fibonacci number.
3. \(F_5 = 5 \) divides every fifth Fibonacci number.
Results

Lemma

For all $n \in \mathbb{N}_0$,

$$F_{3n+4}^2 + F_{3n+2}^2 \text{ is even.}$$
Results

Lemma

For all $n \in \mathbb{N}_0$, $F_{3n+4}^2 + F_{3n+2}^2$ is even.

Proof.

$F_{3n+4}^2 + F_{3n+2}^2 =$
Lemma

For all $n \in \mathbb{N}_0$, $F_{3n+4}^2 + F_{3n+2}^2$ is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$

$$= F_{3n+4}^2$$
Results

Lemma

For all \(n \in \mathbb{N}_0 \),

\[F_{3n+4}^2 + F_{3n+2}^2 \text{ is even.} \]

Proof.

\[
F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2 \\
= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2
\]
Lemma

For all \(n \in \mathbb{N}_0 \),

\[F_{3n+4}^2 + F_{3n+2}^2 \text{ is even.} \]

Proof.

\[
F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2
= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \),

\[F_{3n+4}^2 + F_{3n+2}^2 \text{ is even.} \]

Proof.

\[
F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2
= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2
\]
Results

Lemma

For all $n \in \mathbb{N}_0$, $F_{3n+4}^2 + F_{3n+2}^2$ is even.

Proof.

$$F_{3n+4}^2 + F_{3n+2}^2 = (F_{3n+3} + F_{3n+2})^2 + F_{3n+2}^2$$

$$= F_{3n+3}^2 + 2F_{3n+3}F_{3n+2} + 2F_{3n+2}^2$$
Results

Lemma

For all $n \in \mathbb{N}_0$,

\begin{align*}
\text{a. } & F_{5n+3}^2 + F_{5n+1}^2 \text{ is a multiple of 5.} \\
\text{b. } & F_{5n+4}^2 + F_{5n+2}^2 \text{ is a multiple of 5.}
\end{align*}
Results

Lemma

For all $n \in \mathbb{N}_0$,

a. $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

b. $F_{5n+4}^2 + F_{5n+2}^2$ is a multiple of 5.

<table>
<thead>
<tr>
<th>F_n</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>13</th>
<th>21</th>
<th>34</th>
<th>55</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_n \text{ mod } 5$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>$F_n^2 \text{ mod } 5$</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Results

Lemma

For all $n \in \mathbb{N}_0$, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2
= F_{5n+3}^2
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{5n+3}^2 + F_{5n+1}^2 \) is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2
= F_{5n+3}^2
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2
\]
Results

Lemma

For all $n \in \mathbb{N}_0$, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2
\]

\[
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{5n+3}^2 + F_{5n+1}^2 \) is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2 \\
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1} \\
= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1} \\
= F_{5n+2}^2
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{5n+3}^2 + F_{5n+1}^2 \) is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2 \\
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2 \\
= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2 \\
= 3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{5n+3}^2 + F_{5n+1}^2 \) is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2 \\
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + F_{5n+1}^2 \\
= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2 \\
= 3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+1} \left(F_{5n+1} + F_{5n} \right) \\
= F_{5n+2}
\]
Results

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{5n+3}^2 + F_{5n+1}^2 \) is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2 \\
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2 \\
= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2 \\
= 3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1} \\
= 5F_{5n+1}^2 + F_{5n}^2 + 4F_{5n+1}F_{5n}
\]
Lemma

For all $n \in \mathbb{N}_0$, $F_{5n+3}^2 + F_{5n+1}^2$ is a multiple of 5.

Proof.

\[
F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2
= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2
= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2
= 3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}
= 5F_{5n+1}^2 + F_{5n}^2 + 4F_{5n+1}F_{5n}
\]
Results

Lemma

For all $n \in \mathbb{N}_0$, $F_{5n+3}^2 + F_{5n+1}^2$ and $F_{5n+4}^2 + F_{5n+2}^2$ are multiples of 5.

Proof.

$$F_{5n+3}^2 + F_{5n+1}^2 = (F_{5n+2} + F_{5n+1})^2 + F_{5n+1}^2$$
$$= F_{5n+2}^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$$
$$= (F_{5n+1} + F_{5n})^2 + 2F_{5n+2}F_{5n+1} + 2F_{5n+1}^2$$
$$= 3F_{5n+1}^2 + F_{5n}^2 + 2F_{5n+1}F_{5n} + 2F_{5n+2}F_{5n+1}$$
$$= 5F_{5n+1}^2 + F_{5n}^2 + 4F_{5n+1}F_{5n}$$
Results

Table: F_n under mod 5

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>13</th>
<th>21</th>
<th>34</th>
<th>55</th>
<th>89</th>
<th>144</th>
<th>233</th>
<th>377</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_n</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>F_n^2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Results

Table: \(F_n \) under mod 5

<table>
<thead>
<tr>
<th>(F_n)</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>8</th>
<th>13</th>
<th>21</th>
<th>34</th>
<th>55</th>
<th>89</th>
<th>144</th>
<th>233</th>
<th>377</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_n)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(F_n^2)</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Results

Lemma

For all \(n \geq 2 \),

\[F_n^2 + F_{n-2}^2 \] will never have a factor of 3.

Proof.
Results

Lemma

For all \(n \geq 2 \),

\[F_n^2 + F_{n-2}^2 \] will never have a factor of 3.

Proof.

a. \(F_n^2 \) and \(F_{n-2}^2 \) both have a factor of 3; that is
\[F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3, \] or
Results

Lemma

For all \(n \geq 2 \),

\[F_n^2 + F_{n-2}^2 \] will never have a factor of 3.

Proof.

a. \(F_n^2 \) and \(F_{n-2}^2 \) both have a factor of 3; that is \(F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3 \), or

b. \(F_n^2 \equiv 1 \mod 3 \) and \(F_{n-2}^2 \equiv 2 \mod 3 \) or vice versa.
Results

Lemma

For all $n \geq 2$, $F_n^2 + F_{n-2}^2$ will never have a factor of 3.

Proof.

a. F_n^2 and F_{n-2}^2 both have a factor of 3; that is $F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3$
Results

Lemma

For all \(n \geq 2 \), \(F_n^2 + F_{n-2}^2 \) will never have a factor of 3.

Proof.

b. \(F_n^2 \equiv 1 \mod 3 \) and \(F_{n-2}^2 \equiv 2 \mod 3 \) or vice versa.
Results

Lemma

For all \(n \geq 2 \),

\[F_n^2 + F_{n-2}^2 \text{ will never have a factor of 3.} \]

Proof.

a. \(F_n^2 \) and \(F_{n-2}^2 \) both have a factor of 3; that is

\[F_n^2 \equiv F_{n-2}^2 \equiv 0 \mod 3, \text{ or} \]

b. \(F_n^2 \equiv 1 \mod 3 \) and \(F_{n-2}^2 \equiv 2 \mod 3 \) or vice versa.
Conclusions and Further Work

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{4n+3}^3 + F_{4n+1}^3 \) is divisible by 3.
Conclusions and Further Work

Lemma

For all \(n \in \mathbb{N}_0 \), \(F_{4n+3}^3 + F_{4n+1}^3 \) is divisible by 3.

Conjecture

For all \(n \in \mathbb{N}_0 \), \(F_{14n+5}^2 + F_{14n+3}^2 \) is divisible by 29.

\(F_{14n+11}^2 + F_{14n+9}^2 \) is divisible by 29.
Conclusions and Further Work

Lemma

For all $n \in \mathbb{N}_0$, $F_{4n+3}^3 + F_{4n+1}^3$ is divisible by 3.

Conjecture

For all $n \in \mathbb{N}_0$, $F_{14n+5}^2 + F_{14n+3}^2$ is divisible by 29.

$F_{14n+11}^2 + F_{14n+9}^2$ is divisible by 29.

Conjecture

For all $n \in \mathbb{N}_0$, $L_{3n+5}^2 + L_{3n+3}^2$ is divisible by 2.

$L_{n+3}^3 + L_{n+1}^3$ is divisible by 5.
Questions

Thank You! Questions?
References

