Non-Special Divisors on Graphs

Caroline Grant Melles

U. S. Naval Academy

April 16, 2016

Consider a connected graph G which has no loops, but which may have multi-edges.

The genus of G is

$$
g=\text { number of edges }- \text { number of vertices }+1 .
$$

Example:

Dipole Graph B_{4}

Example:

$$
g=4-2+1=3
$$

Example:

A divisor D on G is an assignment of an integer a_{v} to each vertex v,

$$
D=\sum a_{v} v
$$

Interpretation:
If $a_{v}>0$, then a_{v} represents a number of chips at vertex v (assets).
If $a_{v}<0$, then vertex v is in debt by a_{v} chips.
If no vertex of D is in debt, we say D is effective (written $D \geq 0$).
The degree of D is $\sum a_{v}$ (the net worth).

Example: $G=K_{4}$

$$
D_{1}=-v_{1}+v_{3}+3 v_{4}
$$

$$
D_{2}=v_{2}+2 v_{3}
$$

The divisor D_{2} is effective but the divisor D_{1} is not. Both divisors have degree 3.

Chip-firing move on a vertex of D

We fire a vertex v by sending a chip along each edge e adjacent to v to the other endpoint of e.
Example: $G=K_{4}, D_{1}=-v_{1}+v_{3}+3 v_{4}$

Firing v_{4} sends a chip from v_{4} to each of v_{1}, v_{2}, and v_{3}.
D_{1} changes to $D_{2}=v_{2}+2 v_{3}$.

Set-firing move on D

We fire a set W of vertices by sending a chip along each edge from W to its complement.
Example $\left(C_{4}\right)$: Let $D_{1}=-2 v_{1}+v_{2}+v_{3}$ and let $W=\left\{v_{2}, v_{3}\right\}$.

Firing the set W transforms D_{1} into $D_{2}=-v_{1}+v_{4}$.
Note that firing the complement $W^{c}=\left\{v_{1}, v_{4}\right\}$ on D_{2} transforms D_{2} back to D_{1}.
If we fire all vertices at once, there is no change in the divisor.

Linear Equivalence of Divisors

If D_{1} and D_{2} can be transformed into one another by chip-firing moves, we say that D_{1} and D_{2} are linearly equivalent (written $D_{1} \sim D_{2}$).

We look at equivalence classes of divisors under linear equivalence.
Example: There are 4 linear equivalence classes of degree 0 divisors on C_{4}.

Representatives are

$$
0, \quad-v_{1}+v_{2}, \quad-v_{1}+v_{3}, \quad-v_{1}+v_{4}
$$

The divisor 0 is an effective divisor of degree 0 .
The other three equivalence classes contain no effective divisors.

Non-Special Divisors

A divisor of degree $g-1$ is called non-special if it is not linearly equivalent to any effective divisor.

Example: The following three divisors on C_{4} are non-special:

$$
\begin{aligned}
& -v_{1}+v_{2} \\
& -v_{1}+v_{3} \\
& -v_{1}+v_{4}
\end{aligned}
$$

Non-Special Divisors on B_{4}

Any chip-firing move must send $4 k$ chips from one vertex to the other, for some integer k.

Consider divisors of degree $g-1=2$ on B_{4}. There are four linear equivalence classes, with representatives

$$
2 v_{1}, \quad v_{1}+v_{2}, \quad 2 v_{2}, \quad-v_{1}+3 v_{2}
$$

The non-special divisors are those linearly equivalent to $-v_{1}+3 v_{2}$.

Non-Special Divisors and the Tutte Polynomial

The following result may be proved using Dhar's burning algorithm

- see Cori - Le Borgne, Merino.

Let $T(x, y)$ be the Tutte polynomial of G.
Then $T(1,0)$ is the number of linear equivalence classes of non-special divisors on G.

Remark: It is well-known that $T(1,1)$ is the number of spanning trees of G.

Example: The Tutte polynomial of C_{4} is

$$
\begin{gathered}
T(x, y)=x^{3}+x^{2}+x+y . \\
T(1,0)=3
\end{gathered}
$$

Example: The Tutte polynomial of B_{4} is

$$
\begin{gathered}
T(x, y)=x+y+y^{2}+y^{3} \\
T(1,0)=1
\end{gathered}
$$

Example: The Tutte polynomial of K_{4} is

$$
\begin{gathered}
T(x, y)=x^{3}+3 x^{2}+2 x+4 x y+y^{3}+3 y^{2}+2 y \\
T(1,0)=6
\end{gathered}
$$

Baker - Norine Construction of Non-Special Divisors ν_{P}

Let $P=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be an ordering of the vertices of G.
Let $A_{i j}$ be the number of edges between v_{i} and v_{j}.
Set

$$
\begin{aligned}
\nu_{P}=-v_{1}+\left(A_{21}-1\right) v_{2} & +\left(A_{31}+A_{32}-1\right) v_{3}+\cdots \\
& +\left(A_{n 1}+A_{n 2}+\cdots+A_{n, n-1}-1\right) v_{n}
\end{aligned}
$$

The divisor ν_{P} is non-special.
Every non-special divisor is equivalent to a divisor of the form ν_{P}, for some P.

Proof that ν_{P} is non-special

Suppose that ν_{P} is not non-special, i.e., that ν_{P} is linearly equivalent to an effective divisor D.

Then we can transform D into ν_{P} by some firing amounts $x_{1}, x_{2}, \cdots, x_{n}$, where x_{i} is the number of times v_{i} is fired. We can assume that $x_{i} \geq 0$ for all i and $x_{i}=0$ for at least one i, since firing all vertices at once does not change D.

Let v_{k} be the lowest index vertex in D that is not fired. The vertex v_{k} starts with a nonnegative quantity of chips and gains chips but does not lose chips. In particular, v_{k} gains at least

$$
A_{k 1}+A_{k 2}+\cdots+A_{k, k-1}
$$

chips, since $v_{1}, v_{2}, \cdots, v_{k-1}$ are all fired at least once, by assumption. This is a contradiction, because ν_{P} has only

$$
A_{k 1}+A_{k 2}+\cdots+A_{k, k-1}-1
$$

chips at v_{k}.

Non-Special Divisors on K_{4}

Choose an ordering P on the vertices of K_{4}.
For the graph K_{4},

$$
A_{i j}=1 \text { for all } i \neq j
$$

Then

$$
\nu_{P}=-v_{1}+0 v_{2}+v_{3}+2 v_{4}
$$

Note that we can obtain all 6 linear equivalence classes of non-special divisors on K_{4} by fixing v_{1} and permuting the other three vertices.
Note also that v_{1} is the only vertex in debt, and that no non-empty subset of the other vertices can be fired without another vertex going into debt. The divisor shown is an example of a v_{1}-reduced divisor.

The Canonical Divisor K on a graph G

Let $\operatorname{deg}(v)$ be the degree of the vertex v, i.e., the number of edges incident to v.

The canonical divisor on G is

$$
K=\sum_{v}(\operatorname{deg}(v)-2) v
$$

The degree of K is $2 g-2$.
Example: The canonical divisor on K_{4} is $K=v_{1}+v_{2}+v_{3}+v_{4}$.

Proposition: (Baker-Norine) If D has degree $g-1$, then D is non-special if and only if $K-D$ is non-special.

Example: On K_{4}, the divisor $D=-v_{1}+v_{3}+2 v_{4}$ is non-special.
The canonical divisor is $K=v_{1}+v_{2}+v_{3}+v_{4}$.
Then

$$
K-D=2 v_{1}+v_{2}-v_{4}
$$

which is also non-special.

Riemann-Roch Dimension of a Divisor D

The dimension $r(D)$ of a divisor D is defined as follows.
If D is not linearly equivalent to any effective divisor, $r(D)=-1$.
Otherwise, if D is linearly equivalent to some effective divisor, $r(D)$ is the largest nonnegative integer d such that $D-E$ is linearly equivalent to some effective divisor, for all effective divisors E of degree d.

Baker-Norine Characterization of $r(D)$

Let

$$
\operatorname{deg}^{+}(D)=\sum_{a_{v}>0} a_{v}
$$

(the degree of the effective part of D).
Then
$r(D)=-1+\min \left\{\operatorname{deg}^{+}\left(D^{\prime}-\nu\right) \mid D^{\prime} \sim D\right.$ and ν is non-special $\}$.

Example: B_{4}

Let $D=v_{1}+2 v_{2}$. Recall that $\nu=-v_{1}+3 v_{2}$ is non-special.

$$
D-\nu=2 v_{1}-v_{2}
$$

Every divisor linearly equivalent to $D-\nu$ is of the form

$$
(2+4 k) v_{1}+(-1-4 k) v_{2}
$$

The minimum value of $\operatorname{deg}^{+}\left((2+4 k) v_{1}+(-1-4 k) v_{2}\right)$ is 2 .
Therefore $r(D)=1$.

The Riemann-Roch Theorem for Graphs

(Baker - Norine, 2007)

$$
r(D)-r(K-D)=\operatorname{deg}(D)+1-g
$$

Non-special divisors are central to Baker and Norine's proof.

Example: B_{4}

Example: The canonical divisor on B_{4} is $K=2 v_{1}+2 v_{2}$.
Let $D=v_{1}+2 v_{2}$. Recall that $r(D)=1$. Recall also that $\nu=-v_{1}+3 v_{2}$ is non-special.

Then $K-D=v_{1}$ and $K-D-\nu=2 v_{1}-3 v_{2}$. Every divisor linearly equivalent to $K-D-\nu$ is of the form

$$
(2+4 k) v_{1}+(-3-4 k) v_{2}
$$

It follows that $r(K-D)=0$.

$$
\begin{gathered}
r(D)-r(K-D)=1-0=1 \\
\operatorname{deg}(D)+1-g=3+1-3=1
\end{gathered}
$$

Other Interpretations of Non-Special Divisors

Non-special divisor classes correspond to maximal G-parking functions (see Benson (2008), Biggs (1999), Greene and Zaslavsky (1983)).

Non-special divisor classes correspond to acyclic orientations on G with a unique source.

Using Dhar's burning algorithm with a fixed ordering on edges, non-special divisor classes correspond to spanning trees of G with no externally active edges.

