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Lyapunov consistency: A form of nonlinear stability
Placeholder

A more well known form of nonlinear stability is entropy stability:
• Mostly used in CFD applications.
• Practically allows for the derivation of a bound on solutions [1, 2].

∫

Ω

∂S
∂t

≤ CDATA (1)
=⇒

∥∥u(x, tf )
∥∥

L2(Ω)
≤ CDATA

λmin

(
∂2S
∂u2 (θ)

) + ∥u(x, 0)∥L2(Ω) (2)
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Entropy stability in practice
Placeholder

Figure: Numerical stability for the Taylor–Green vortex (TGV), left, and homogeneous-isotropicturbulence (HIT), right. √ = success, × = failures. The entropy stable discretization is notedES-C. The discretization that uses the Kennedy and Gruber (2008) flux is noted SF-KG. Thestandard discontinuous collocation is noted DC. Adapted from [3]. 3 / 24



ODE to PDE: reaction equation
Placeholder

We are interested in equations the form
∂U
∂t

= F (U) , t ∈ [t0,Tf ). (3)
With globally asymptotically stable equilibrium points Ueq, and a Lyapunov function V
s.t.

V > 0,
dV
dt

≤ 0 (4)
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ODE to PDE: reaction-diffusion equation
Placeholder

We extend the reaction equation to a PDE via a diffusion term
∂U
∂t

= F (U) +
d∑

l,m=1

∂

∂xl

(
Cl,m

∂U
∂xm

)
, x ∈ Ω, t ∈ [t0,Tf ). (5)

This system inherits the ODE equilibrium points because they are constant in space.
Define the Lyapunov functional

Ṽ =

∫

Ω
VdΩ, we would like Ṽ > 0, and dṼ

dt
≤ 0 (6)
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Lyapunov consistency
Placeholder

Define W = dV/dU. We consider systems
where
1. W⊤F ≤ 0

2. V is convex and locally positive
definite

3. M̂+ M̂⊤ ≥ 0, where M̂l,m = Ĉl,m

4. appropriate boundary conditions can
be found such that

∮

Γ

dim∑

l,m

W⊤Ĉl,m
∂W
∂xm

nxl dΓ ≤ 0 (7)

Theorem
Given the previous assumptions, if Ṽ is
locally positive definite, dṼ/dt ≤ 0, and
∥U∥ → +∞ =⇒ Ṽ(U) → +∞, then,
Ueq = 0 is globally asymptotically stable.
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Lyapunov consistency
Placeholder

We multiply the PDE from the left by the Lyapunov variables W = dV/dU and integrate
over the domain

∫

Ω
W⊤∂U

∂t
dx =

∫

Ω
W⊤F (U) + W⊤

d∑

l,m=1

∂

∂xl

(
Cl,m

∂U
∂xm

)
dx. (8)

Using integration by parts and applying the previous assumptions
∂Ṽ
∂t

≤ −
∫

Ω
Z⊤M̂Z dx ≤ 0, (9)

where Z =
[
∂W
∂x1

, · · · , ∂W
∂xm

]⊤.
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Semi-discrete Lyapunonv consistency: SBP operators
Placeholder

SBP operators define a discrete integration (quadrature) and high-order operators

∥x∥2
L2 = x⊤Px, D = P−1Q, Q+Q⊤ =



−1

0
1


 , Dxj = jxj−1, ∀j ≤ p. (10)

SBP operators are capable of inheriting the bounds into the semi-discrete
representation by mimicing the integration by parts property discretely [4].
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Semi-dicrete Lyapunov consistency: scheme
Placeholder

General form (curvilinear coordinates shown in the paper)
duk

dt
= fk +

dim∑

l,m=1

Dl[Cl,m]kΘ
k
m + SATV + SATIP + SATBC, (11)

where
Θk

m = Dmwk + SATW . (12)
SAT are penalty terms that apply at the interfaces between elements.
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Semi-discrete Lyapunov consistency
Placeholder

Utilizing the discrete counterparts to the continuous operators,
K∑

k=1

1̄⊤P̄k
dvk

dt
=

K∑

k=1

w⊤
k Pkfk −

K∑

k=1

dim∑

l,m=1

(
Θk

l

)⊤ Ĉl,mPkΘ
k
m + ST, (13)

where ST are surface terms.
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Semi-discrete Lyapunov consistency: interpretation
Placeholder

RD system with:
1. W⊤F ≤ 0

2. V > 0 is convex
3. M̂+ M̂⊤ ≥ 0

4. ST ≤ 0

By bradeazy [5].

Theorem
Given the previous assumptions, if Ṽ
is locally positive definite,
dṼ/dt ≤ 0, and ∥u∥ → +∞ =⇒
Ṽ(u) → +∞, then, ueq = 0 is
globally asymptotically stable.
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Relaxation Runge–Kutta: fully discrete Lyapunov
stability
Placeholder

Figure: The Lyapunov functionalevaluated at the RK update may missthe manifold trajectory. The RRKmethod corrects this by adjusting∆twith the root γ ∼ 1.(un)

(un + 1)

∆t
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Relaxation Runge–Kutta: fully discrete Lyapunov
stability
Placeholder

Figure: The Lyapunov functionalevaluated at the RK update may missthe manifold trajectory. The RRKmethod corrects this by adjusting∆twith the root γ ∼ 1.(un)

(un + 1)

(un + 1)

γ∆t
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Relaxation Runge–Kutta: fully discrete Lyapunov
stability
Placeholder

We compute a γn at every timestep to adjust the update stepsize∆t

Un+1
γ = Un + γn∆t

s∑

i=1

biFi, (14)

Where γn is the positive root of
r(γ) = η

(
Un + γ∆t

s∑

i=1

biFi

)
− η(Un)− γ∆t

s∑

i=1

bi
〈
η′(Yi), Fi

〉
, (15)

More on RRK methods for general functionals in [6].
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RRK: important results
Placeholder

The RRK scheme:
• inherits the Lyapunov functional, and is dissipation preserving
• the local error isO(∆tp+1)

• has a positive root γ
• fixed points retain the stability properties of the ODE equilibriums
• does not have spurious solutions
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Numerical results: SI epidemiology
Placeholder

From [7, 8]
U = [S, I]⊤ , (16a)
F =

[
ν Rd (S + I) (1 − (S + I))− R0

SI
S + I

− νS,R0
SI

S + I
− I

]⊤
, (16b)

C =

[
DS 0
0 DI

]
, (16c)

Where Rd, R0 and ν depend on the parameters:
• r, the susceptible growth rate
• β, the transmission rate
• µ, the death rate
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Numerical results: SI epidemiology
Placeholder

Figure: Temporal evolutionof the maximum norm ofthe solution, (S, I),Lyapunov functional, Ṽ, andtime derivative of theLyapunov functional, dṼ
dt , forthe SI PDE model.
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Numerical results: SI epidemiology
Placeholder

R0 = 1.140 R0 = 1.154 R0 = 1.170

R0 = 1.200 R0 = 1.213
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Figure: Infectedpopulation, I, at thefinal time Tf = 3, 750.
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Numerical results: tumor M1 virology
Placeholder

The model consists of [9]
• S nutrients consentration
• N normal cells
• T tumor cells
• M1 virus
• Z cytotoxic T lymphocytes
(CTS)
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Numerical results: tumor M1 virology
Placeholder

Figure: Brain meshconstructed from MRIimages using SimNIBS [10].The total number ofhexahedral elements is
≃ 3.2899 × 106, and thenumber of DOFs is
≃ 18.9496 × 106.
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Numerical results: tumor M1 virology
Placeholder
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Figure: Temporal evolutionof the nutrients, S, normalcells, N, tumor cells, T, freeM1 virus, M1, immuneresponse, Z.
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Numerical results: tumor M1 virology
Placeholder

Figure: Temporal evolutionof the Lyapunov functional,
Ṽ, and its time derivative,
∂Ṽ/∂t.
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Numerical results: tumor M1 virology
Placeholder

t = 0 t = 32 t = 247

Figure: Response of the tumor to the oncolytic M1 virotherapy at t = 0 (initial condition),
t = 32.67, and t = 247.96. 22 / 24



Open access available
Placeholder
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