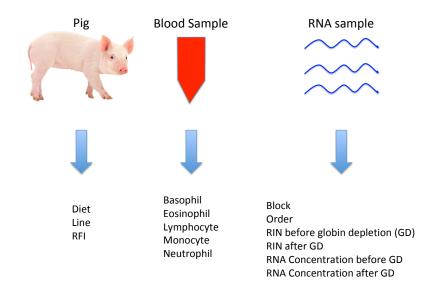
Identifying relevant covariates in RNA-seq analysis by pseudo-variable augmentation

Yet Nguyen, Ph.D.¹ and Dan Nettleton, Ph.D.²

2024-11-02

¹Department of Mathematics and Statistics, Old Dominion University ²Department of Statistics, Iowa State University

Experimental Design



Prototypical RNA-seq Dataset

	Т	reatme	ent	1	Treatment 2				
	<i>u</i> ₁₁	<i>u</i> ₁₂		u_{1n_1}	<i>u</i> ₂₁	u ₂₂		u_{2n_2}	
\boldsymbol{x}_1	0	0		0	1	1		1	
x ₂	0.5	0.95	•••	-1.42	45	.89	•••	1.2	
:	:	÷		÷	÷	÷		÷	
\boldsymbol{x}_k	0	1		0	1	0		0	
gene 1	10	13		2017	31	975		3289	
gene 2	0	2	•••	1	0	0	•••	1	
gene 3	1	3	•••	0	0	0	•••	0	
:	÷	÷		÷	÷	÷		÷	
gene G	17301	2464		7345	3214	534		934	

How to Handle the Available Covariates?

- Including all available covariates (Full)
- Excluding all available covariates (OnlyLine)
- Backward selection that maximizes the number of DE genes with respect to the main factor of interest (BS15, Nguyen et al. 2015)

Our Proposed Method (Nguyen and Nettleton 2024+)

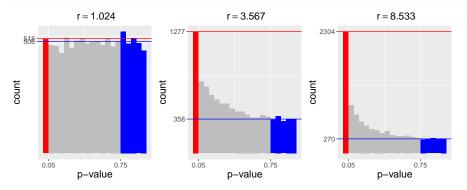
- Using limma-voom (Law et al. (2014)) for differential expression analysis to obtain vectors of *p*-values of tests for significance of regression coefficients w.r.t each of the covariates
- Selecting the most relevant covariates by a backward selection strategy intending to control the false selection rate (FSR) using pseudo-variables (Wu et al. (2007), 'Controlling Variable Selection by the Addition of Pseudovariables', JASA)
- Wu et al. (2007) method published for one response variable
- We extend Wu et al. (2007)'s method to thousands of response variables

Measure of Covariate Relevance

Definition

With $\mathbb{1}$ representing an indicator function, a relevance measure for covariate j is defined as

$$r(\mathbf{p}_j) = \frac{\sum_{g=1}^G \mathbb{1}(p_{gj} \le 0.05)}{\max\{\sum_{g=1}^G \mathbb{1}(p_{gj} \ge 0.75)/5, 1\}}.$$
 (1)



Backward Selection to Control FSR

- Run backward selection procedure using $r(\cdot)$ on k_T covariates of **X**
- Let $BS(\mathbf{X}, \lambda)$ denote the subset of \mathbf{X} selected by this backward selection, i.e., the largest subset of \mathbf{X} for which each variable has *r*-value at least λ
- Define $S(\lambda) = \text{Card}\{BS(\mathbf{X}, \lambda)\}$. Then $S(\lambda) = R(\lambda) + I(\lambda)$, where $R(\lambda)$ and $I(\lambda)$ denote the number of selected relevant and irrelevant covariates, respectively
- False selection rate (FSR) is calculated as $\alpha(\lambda) = \frac{E(I(\lambda))}{E(S(\lambda)+1)}$
- Calculate the tuning parameter λ_* to control FSR at level α_0

$$\lambda_* = \inf\{\lambda : \alpha(\lambda) \le \alpha_0\}.$$

Generate B sets of k_P pseudo-variables Z_b

Define $\alpha_P(\lambda) = \frac{E(I^*_{P,b}(\lambda))}{E(1+S_{P,b}(\lambda))}$ where

- $R_{P,b}(\lambda)$: number of truly relevant covariates selected from $\boldsymbol{X}, \boldsymbol{Z}_p$
- $I_{P,b}(\lambda)$: number of truly irrelevant covariates selected from X, Z_p
- $I_{P,b}^*(\lambda)$: number of pseudo-covariates selected from $\boldsymbol{X}, \boldsymbol{Z}_p$
- $S_{P,b} = R_{P,b}(\lambda) + I_{P,b}(\lambda) + I^*_{P,b}(\lambda)$

Estimating FSR II

Assumptions

(A1) $E(I(\lambda)) = E(I_{P,b}(\lambda)) = k_U E(I_{P,b}^*(\lambda))/k_P$, where k_U is the unknown number of truly irrelevant covariates

(A2) $E(R_{P,b}(\lambda)) = E(R(\lambda))$

• (A1) & (A2) imply:
$$\alpha_P(\lambda) = \frac{k_P \alpha(\lambda)}{k_P \alpha(\lambda) + k_U}$$

• Let
$$\overline{I}_P^*(\lambda) = B^{-1} \sum_{b=1}^B I_{P,b}^*(\lambda), \overline{S}_P(\lambda) = B^{-1} \sum_{b=1}^B S_{P,b}(\lambda)$$

• Estimate
$$\alpha_P(\lambda)$$
 by $\widehat{\alpha}_P(\lambda) = \frac{\overline{l}_P^*(\lambda)}{1+\overline{S}_P(\lambda)}$

• If k_U is known, estimate $\alpha(\lambda)$ by solving

$$\widehat{\alpha}_{P}(\lambda) = \frac{k_{P}\alpha(\lambda)}{k_{P}\alpha(\lambda) + k_{U}}$$

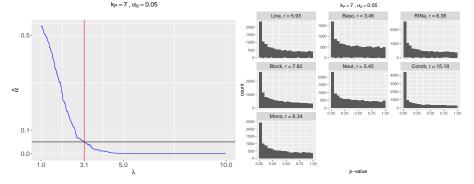
Generating Pseudo-covariates $Z = (z_1, \ldots, z_{k_p})$

- Option 1 (WN): $\boldsymbol{z}_1, \ldots, \boldsymbol{z}_{k_P}$ i.i.d. ~ $N(\boldsymbol{0}, \boldsymbol{1})$
- Option 2 (RX): The n rows of Z are obtained by randomly permuting the rows and the columns of X
- Options 3 & 4 (OWN & ORX): $(I H_X)Z$, where $H_X = X(X'X)^{-1}X'$, where Z is generated either by option 1 or 2, respectively

RFI RNA-seq Data Analysis

Table 1: Covariates removed from the full model and their r values at each iteration of the backward selection algorithm applied to the RFI RNA-seq dataset.

Iteration	1	2	3	4	5	6	7	8	9	10	11	12	13
Covariate	RINb	Eosi	Order	Conca	Diet	RFI	Lymp	Baso	RINa	Block	Neut	Concb	Mono
r	0.26	0.49	0.62	0.65	0.53	2.07	2.87	3.46	6.3	7.71	7.85	9.42	11.45



Simulation Study - Setting

Table 2: Six simulation scenarios corresponding to six sets of truly relevant covariates.

Number of relevant covariates k_R	Relevant covariate					
0						
1	Mono					
2	Concb, Mono					
6	Baso, RINa, Block, Neut, Concb, Mono					
7	Lymp, Baso, RINa, Block, Neut, Concb, Mono					
8	RFI, Lymp, Baso, RINa, Block, Neut, Concb, Mono					

• Number of genes: 2000

• Number of replications: 100

Simulation Study - FSR Results



Figure 1: The figure displays the variable selection performance of four variants of the proposed method and BS15.

Simulation Study - Differential Expression Analysis Results

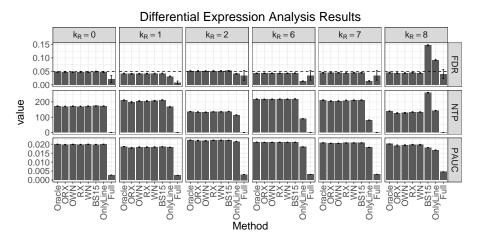


Figure 2: The figure presents the performance of differential expression analysis of the twelve methods.

- The proposed covariate selection method control FSR well
- The selected model has good performance in identifying DE genes in terms of
 - FDR control
 - Ability to distinguish EE genes and DE genes
- The proposed method is available at github.com/ntyet/csrnaseq
- Contact: Yet Nguyen, ynguyen@odu.edu

Thank you!

References I

- Law, C. W., Chen, Y., Shi, W., and Smyth, G. K. (2014), "Voom: Precision weights unlock linear model analysis tools for RNA-seq read counts," *Genome Biology*, 15, R29. https://doi.org/10.1186/gb-2014-15-2-r29.
- Nguyen, Y., and Nettleton, D. (2024+), "Identifying relevant covariates in RNA-seq analysis by pseudo-variable augmentation," *Journal of Agricultural, Biological* and Environmental Statistics, accepted.
- Nguyen, Y., Nettleton, D., Liu, H., and Tuggle, C. K. (2015), "Detecting differentially expressed genes with RNA-seq data using backward selection to account for the effects of relevant covariates," *Journal of Agricultural*, *Biological, and Environmental Statistics*, 20, 577–597. https://doi.org/10.1007/s13253-015-0226-1.
- Wu, Y., Boos, D. D., and Stefanski, L. A. (2007), "Controlling variable selection by the addition of pseudovariables," *Journal of the American Statistical Association*, Taylor & Francis, 102, 235–243. https://doi.org/10.1198/01621450600000843.