An extension of the Pythagorean theorem, with applications

Ray Cheng Old Dominion University
14 October 2023
MAA MD/DC/VA Section Meeting
Stevenson University

Overview

Outline

Outline

Review of the Pythagorean theorem
Orthogonality in normed spaces
Extension of the Pythagorean theorem
Applications

Review of the Pythagorean theorem

Review of the Pythagorean theorem

Review of the Pythagorean theorem

Review of the Pythagorean theorem

If $\vec{x}=\left(x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{1}, y_{2}\right)$, define

$$
\begin{aligned}
& \|\vec{x}\|=\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}\right)^{1 / 2} \\
& \|\vec{y}\|=\left(\left|y_{1}\right|^{2}+\left|y_{2}\right|^{2}\right)^{1 / 2} \\
& \langle\vec{x}, \vec{y}\rangle=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}} .
\end{aligned}
$$

Review of the Pythagorean theorem

We say that \vec{x} is orthogonal to \vec{y}, and write $\vec{x} \perp \vec{y}$, if $\langle\vec{x}, \vec{y}\rangle=0$.

Review of the Pythagorean theorem

We say that \vec{x} is orthogonal to \vec{y}, and write $\vec{x} \perp \vec{y}$, if $\langle\vec{x}, \vec{y}\rangle=0$.

Theorem: If $\vec{x} \perp \vec{y}$, then

$$
\|\vec{x}+\vec{y}\|^{2}=\|\vec{x}\|^{2}+\|\vec{y}\|^{2} .
$$

Orthogonality in normed spaces

Orthogonality in normed spaces

A norm on a vector space is a notion of "length."

Orthogonality in normed spaces

A norm on a vector space is a notion of "length."
Example: Let $1<p<\infty$. Define

$$
\|\vec{x}\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}
$$

for all $\vec{x}=\left(x_{1}, x_{2}\right)$.

Orthogonality in normed spaces

A norm on a vector space is a notion of "length."
Example: Let $1<p<\infty$. Define

$$
\|f\|_{p}=\left(\int_{X}|f(x)|^{p} d \mu\right)^{1 / p}
$$

for all $f \in L^{p}(X, \mu)$.

Orthogonality in normed spaces

Isosceles orthogonality:

$$
\vec{x} \perp_{I} \vec{y} \text { if }\|\vec{x}+\vec{y}\|=\|\vec{x}-\vec{y}\| .
$$

Orthogonality in normed spaces

Isosceles orthogonality:

$$
\vec{x} \perp_{I} \vec{y} \text { if }\|\vec{x}+\vec{y}\|=\|\vec{x}-\vec{y}\| .
$$

Roberts orthogonality

$$
\vec{x} \perp_{R} \vec{y} \text { if }\|\vec{x}+c \vec{y}\|=\|\vec{x}-c \vec{y}\| \text { for all } c .
$$

Orthogonality in normed spaces

Birkhoff-James orthogonality:

$$
\vec{x} \perp_{B} \vec{y} \text { if }\|\vec{x}+c \vec{y}\| \geq\|\vec{x}\| \text { for all } c .
$$

Orthogonality in normed spaces

Birkhoff-James orthogonality:

$$
\vec{x} \perp_{B} \vec{y} \text { if }\|\vec{x}+c \vec{y}\| \geq\|\vec{x}\| \text { for all } c .
$$

For $1<p<\infty$,

$$
\left(x_{1}, x_{2}\right) \perp_{B}\left(y_{1}, y_{2}\right) \quad \text { iff } \quad\left|x_{1}\right|^{p-2} \overline{x_{1}} y_{1}+\left|x_{2}\right|^{p-2} \overline{x_{2}} y_{2}=0
$$

Extension of the Pythagorean theorem

Theorem (W. Ross and YHP, 2015)
Let $1<p \leq 2$. If $\vec{x} \perp_{B} \vec{y}$, then

$$
\begin{aligned}
& \|\vec{x}\|_{p}^{p}+\left(2^{p-1}-1\right)^{-1}\|\vec{y}\|_{p}^{p} \geq\|\vec{x}+\vec{y}\|_{p}^{p} \\
& \|\vec{x}\|_{p}^{2}+(p-1)\|\vec{y}\|_{p}^{2} \leq\|\vec{x}+\vec{y}\|_{p}^{2}
\end{aligned}
$$

The inequalities reverse when $2 \leq p<\infty$.

Applications

Applications

Let \mathscr{M} be a subspace of a normed space \mathscr{X}. For any $\vec{x} \in \mathscr{X}$, the metric projection of \vec{x} onto \mathscr{M} is the vector $\vec{y} \in \mathscr{M}$ satisfying

$$
\|\vec{x}-\vec{y}\| \leq\|\vec{x}-\vec{z}\| \text { for all } \vec{z} \in \mathscr{M}
$$

We write $P_{M} \vec{x}=\vec{y}$.
(If X is complete and uniformly convex, then \vec{y} exists and is unique.)

Applications

Theorem (J. Mashreghi, W. Ross and YHP, 2019)
Let $\mathscr{M}_{1} \subseteq \mathscr{M}_{2} \subseteq \mathscr{M}_{3} \subseteq \cdots$ and $\mathscr{M}_{\infty}=\bigcup_{n=1}^{\infty} \mathscr{M}_{n}$ be subspaces of
L^{p}, where $1<p<\infty$. If P_{n} is the metric projection onto \mathscr{M}_{n}, then

$$
\lim _{n \rightarrow \infty} P_{n} f=P_{\infty} f \quad \text { for all } f \in L^{p}
$$

Applications

Theorem (J. Mashreghi, W. Ross and YHP, 2019)

$$
\lim _{n \rightarrow \infty} P_{n} f=P_{\infty} f \quad \text { for all } f \in L^{p}
$$

Proof: If $m<n$, then $\left(f-P_{n} f\right) \perp_{B}\left(P_{m} f-P_{n} f\right)$

$$
\left\|f-P_{m} f\right\|_{p}^{r} \geq\left\|f-P_{n} f\right\|_{p}^{r}+K\left\|P_{m} f-P_{n} f\right\|_{p}^{r}
$$

Applications

Let $1<p<\infty$. Consider the set of analytic functions $f(z)$ on the open unit disk \mathbb{D} such that

$$
\|f\|_{p}=\left(\sum_{n=0}^{\infty}\left|\hat{f}_{n}\right|^{p}\right)^{1 / p}<\infty
$$

Characterize the zero sets of such $f(z)$.
(Dragas \& YHP, 2018; Mashreghi, Ross \& YHP 2019; YHP, 2019).

Applications

Suppose $W=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\} \subseteq \mathbb{D} \backslash\{0\}$.

Applications

Suppose $W=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\} \subseteq \mathbb{D} \backslash\{0\}$.
Define $Q_{n}(z)=\left(1-z / w_{1}\right)\left(1-z / w_{2}\right) \cdots\left(1-z / w_{n}\right)$.

Applications

Suppose $W=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\} \subseteq \mathbb{D} \backslash\{0\}$.
Define $Q_{n}(z)=\left(1-z / w_{1}\right)\left(1-z / w_{2}\right) \cdots\left(1-z / w_{n}\right)$.
Let J_{n} be Q_{n} minus its metric projection onto the subspace spanned by $z Q_{n}(z), z^{2} Q_{n}(z), z^{3} Q_{n}(z), \ldots$

Applications

Suppose $W=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\} \subseteq \mathbb{D} \backslash\{0\}$.
Define $Q_{n}(z)=\left(1-z / w_{1}\right)\left(1-z / w_{2}\right) \cdots\left(1-z / w_{n}\right)$.
Let J_{n} be Q_{n} minus its metric projection onto the subspace spanned by $z Q_{n}(z), z^{2} Q_{n}(z), z^{3} Q_{n}(z), \ldots$

Then W is a zero set for some nontrivial f iff $\sup _{n}\left\|J_{n}\right\|_{p}<\infty$.

Applications

Let $p>2$ be an even integer. Consider the set of analytic functions $f(z)$ on the open unit disk such that

$$
\|f\|_{p}=\lim _{r \rightarrow 1-}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{1 / p}<\infty .
$$

Applications

Let $p>2$ be an even integer. Consider the set of analytic functions $f(z)$ on the open unit disk such that

$$
\|f\|_{p}=\lim _{r \rightarrow 1-}\left(\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} \frac{d \theta}{2 \pi}\right)^{1 / p}<\infty
$$

Find the polynomial $Q(z)$ of degree d minimizing $\|1-Q(z) f(z)\|_{p}$.

Applications

Where can the roots of $Q(z)$ be located?

Applications

Where can the roots of $Q(z)$ be located?
Theorem (C. Felder and YHP, 2021)
Let $p>2$ be an even integer. The roots of the polynomial $Q(z)$ of degree d minimizing $\|1-Q(z) f(z)\|_{p}$ are bounded away from the origin by a distance depending only on p.

Applications

Where can the roots of $Q(z)$ be located?
Theorem (C. Felder and YHP, 2021)
Let $p>2$ be an even integer. The roots of the polynomial $Q(z)$ of degree d minimizing $\|1-Q(z) f(z)\|_{p}$ are bounded away from the origin by a distance depending only on p.

Proof: Apply the Pythagorean inequalities 17 times!

The End

