An extension of the Pythagorean theorem, with applications

Ray Cheng Old Dominion University

14 October 2023

MAA MD/DC/VA Section Meeting Stevenson University

Overview

Outline

Outline

Review of the Pythagorean theorem Orthogonality in normed spaces

Extension of the Pythagorean theorem

Applications

If $\vec{x} = (x_1, x_2)$ and $\vec{y} = (y_1, y_2)$, define $\|\vec{x}\| = \left(|x_1|^2 + |x_2|^2\right)^{1/2}$ $\|\vec{y}\| = \left(|y_1|^2 + |y_2|^2\right)^{1/2}$ $\langle \vec{x}, \vec{y} \rangle = x_1 \overline{y_1} + x_2 \overline{y_2}.$

We say that \vec{x} is orthogonal to \vec{y} , and write $\vec{x} \perp \vec{y}$, if $\langle \vec{x}, \vec{y} \rangle = 0$.

Theorem: If $\vec{x} \perp \vec{y}$, then $\|\vec{x} + \vec{y}\|^2 = \|\vec{x}\|^2 + \|\vec{y}\|^2.$

We say that \vec{x} is orthogonal to \vec{y} , and write $\vec{x} \perp \vec{y}$, if $\langle \vec{x}, \vec{y} \rangle = 0$.

A norm on a vector space is a notion of "length."

A norm on a vector space is a notion of "length." **Example**: Let 1 . Define $\|\vec{x}\|_{p} = \left(|x_{1}|^{p} + |x_{2}|^{p}\right)^{1/p}$ for all $\vec{x} = (x_1, x_2)$.

A norm on a vector space is a notion of "length." **Example**: Let 1 . Define $\left\| f \right\|_{p} = \left(\int_{X} |f(x)|^{p} d\mu \right)^{1/p}$

for all $f \in L^p(X, \mu)$.

Isosceles orthogonality:

 $\vec{x} \perp_I \vec{y}$ if $||\vec{x} + \vec{y}|| = ||\vec{x} - \vec{y}||.$

||.

Isosceles orthogonality:

$$\vec{x} \perp_I \vec{y}$$
 if $\|\vec{x} + \vec{y}\| = \|\vec{x} - \vec{y}\|$

Roberts orthogonality

 $\vec{x} \perp_R \vec{y}$ if $\|\vec{x} + c\vec{y}\| = \|\vec{x} - c\vec{y}\|$ for all c.

Birkhoff-James orthogonality:

 $\vec{x} \perp_B \vec{y}$ if $\|\vec{x} + c\vec{y}\| \ge \|\vec{x}\|$ for all c.

Birkhoff-James orthogonality: $\vec{x} \perp_B \vec{y}$ if $\|\vec{x} + c\vec{y}\| \ge \|\vec{x}\|$ for all c. For 1 ,

 $(x_1, x_2) \perp_B (y_1, y_2)$ iff $|x_1|^{p-2} \overline{x_1} y_1 + |x_2|^{p-2} \overline{x_2} y_2 = 0.$

Extension of the Pythagorean theorem

- **Theorem** (W. Ross and YHP, 2015) Let $1 . If <math>\vec{x} \perp_B \vec{y}$, then $\|\vec{x}\|_{p}^{p} + (2^{p-1} - 1)^{-1} \|\vec{y}\|_{p}^{p} \ge \|\vec{x} + \vec{y}\|_{p}^{p}$ $\|\vec{x}\|_{p}^{2} + (p-1)\|\vec{y}\|_{p}^{2} \le \|\vec{x} + \vec{y}\|_{p}^{2}$
- The inequalities reverse when $2 \le p < \infty$.

Let \mathscr{M} be a subspace of a normed space \mathscr{X} . For any $\vec{x} \in \mathscr{X}$, the metric projection of \vec{x} onto \mathscr{M} is the vector $\vec{y} \in \mathscr{M}$ satisfying

$$\|\vec{x} - \vec{y}\| \le \|\vec{x} - \vec{z}\| \text{ for all } \vec{z}$$

We write $P_{\mathscr{M}}\vec{x} = \vec{y}$. (If \mathscr{X} is complete and uniformly

(If \mathscr{X} is complete and uniformly convex, then \vec{y} exists and is unique.)

Theorem (J. Mashreghi, W. Ross and YHP, 2019) L^p , where $1 . If <math>P_n$ is the metric projection onto \mathcal{M}_n , then $\lim P_n f = P_{\infty} f \quad \text{for all } f \in L^p.$ $n \rightarrow \infty$

Theorem (J. Mashreghi, W. Ross and YHP, 2019) $\lim P_n f = P_{\infty} f \quad \text{for all } f \in L^p.$ $n \rightarrow \infty$

Proof: If m < n, then $(f - P_n f) \perp_B (P_m f - P_n f)$

 $||f - P_m f||_p^r \ge ||f - P_n f||_p^r + K||P_m f - P_n f||_p^r$

Let 1 . Consider the set of analytic functionsf(z) on the open unit disk \mathbb{D} such that $\||f\||_p = \left(\sum_{n=1}^{\infty} |\hat{f}_n|^p\right)^{1/p} < \infty.$ n=0

Characterize the zero sets of such f(z). (Dragas & YHP, 2018; Mashreghi, Ross & YHP 2019; YHP, 2019).

Suppose $W = \{w_1, w_2, w_3, ...\} \subseteq \mathbb{D} \setminus \{0\}.$

Suppose $W = \{w_1, w_2, w_3, ...\} \subseteq \mathbb{D} \setminus \{0\}.$ Define $Q_n(z) = (1 - z/w_1)(1 - z/w_2)\cdots(1 - z/w_n)$.

Suppose $W = \{w_1, w_2, w_3, ...\}$ Define $Q_n(z) = (1 - z/w_1)(1 - z)$ Let J_n be Q_n minus its metric provides space spanned by $zQ_n(z)$,

$$\subseteq \mathbb{D} \setminus \{0\}.$$

 $z/w_2) \cdots (1 - z/w_n).$
rojection onto the
 $, z^2Q_n(z), z^3Q_n(z), \dots$

Suppose $W = \{w_1, w_2, w_3, ...\}$ Define $Q_n(z) = (1 - z/w_1)(1 - z)$ Let J_n be Q_n minus its metric p subspace spanned by $zQ_n(z)$

Then W is a zero set for some nontrivial fiff sup $||J_n||_p < \infty$. N

Applications

$$\subseteq \mathbb{D} \setminus \{0\}.$$

 $z/w_2) \cdots (1 - z/w_n).$
Projection onto the
 $z^2Q_n(z), z^3Q_n(z), \dots$

f(z) on the open unit disk such that

$$\|f\|_{p} = \lim_{r \to 1^{-}} \left(\int_{0}^{2\pi} |f(re^{i\theta})|^{p} \frac{d}{dt} \right)$$

Let p > 2 be an even integer. Consider the set of analytic functions

 $\frac{d\theta}{2\pi}\Big)^{1/p} < \infty.$

f(z) on the open unit disk such that

$$\|f\|_{p} = \lim_{r \to 1^{-}} \left(\int_{0}^{2\pi} |f(re^{i\theta})|^{p} \frac{d\theta}{2\pi} \right)^{1/p} < \infty.$$

Let p > 2 be an even integer. Consider the set of analytic functions

Find the polynomial Q(z) of degree d minimizing $||1 - Q(z)f(z)||_p$.

Where can the roots of Q(z) be located?

Where can the roots of Q(z) be located?

Theorem (C. Felder and YHP, 2021) Let p > 2 be an even integer. The roots of the polynomial Q(z) of degree d minimizing $\|1 - Q(z)f(z)\|_p$ are bounded away from the origin by a distance depending only on p.

- Where can the roots of Q(z) be located?
- **Theorem** (C. Felder and YHP, 2021) Let p > 2 be an even integer. The roots of the polynomial Q(z) of degree d minimizing $||1 - Q(z)f(z)||_p$ are bounded away from the origin by a distance depending only on p.
- **Proof:** Apply the Pythagorean inequalities 17 times!

The End