Pythagorean Triples and Generalized Fibonacci Numbers

Jathan Austin

Salisbury University

- 2 The Fibonacci Sequence
- **3** Known Connections
- 4 Newer Connections

Definition

A **Pythagorean triple** (PT) is an ordered triple of positive integers, (a, b, c), such that $a^2 + b^2 = c^2$. The PT is called **primitive** provided gcd(a, b, c) = 1.

Definition

A **Pythagorean triple** (PT) is an ordered triple of positive integers, (a, b, c), such that $a^2 + b^2 = c^2$. The PT is called **primitive** provided gcd(a, b, c) = 1.

Theorem

Let (a, b, c) be a PT. (a, b, c) is primitive if and only if it can be written in the form $(m^2 - n^2, 2mn, m^2 + n^2)$ where $m, n \in \mathbb{N}$, m > n, gcd(m, n) = 1, and m + n is odd.

Definition

A **Pythagorean triple** (PT) is an ordered triple of positive integers, (a, b, c), such that $a^2 + b^2 = c^2$. The PT is called **primitive** provided gcd(a, b, c) = 1.

Theorem

Let (a, b, c) be a PT. (a, b, c) is primitive if and only if it can be written in the form $(m^2 - n^2, 2mn, m^2 + n^2)$ where $m, n \in \mathbb{N}$, m > n, gcd(m, n) = 1, and m + n is odd.

Theorem

Let t be an even positive integer and $r, s \in \mathbb{N}$ such that $t^2 = 2rs$. Then, (r + t, s + t, r + s + t) is a PT. The PT is primitive if and only if gcd(r, s) = 1.

WLOG, we'll assume s is even.

Forms of PTs

Example

Let t = 12. $t^2 = 2 \cdot 72$, so we have several choices for r and s: r = 1, s = 72: (13,84,85) r = 2, s = 36: (14,48,50) r = 3, s = 24: (15,36,39) r = 4, s = 18: (16,30,34) r = 6, s = 12: (18,24,30) r = 8, s = 9: (20,21,29)

Definition

The **Fibonacci sequence**, $\{F_n\}$ is given by $F_0 = 0$, $F_1 = 1$, and for $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.

Definition

The **Fibonacci sequence**, $\{F_n\}$ is given by $F_0 = 0$, $F_1 = 1$, and for $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.

Definition

A generalized Fibonacci sequence $\{w_n\}$ is given by $w_0 = c, w_1 = d$ and for $n \ge 2$, $w_n = aw_{n-1} + bw_{n-2}$, where $a, b, c, d \in \mathbb{Z}$.

Check out Kalman, D., & Mena, R. (2003). *The Fibonacci Numbers: Exposed. Mathematics Magazine*, *76*(3), 167–181.

Definition

The **Fibonacci sequence**, $\{F_n\}$ is given by $F_0 = 0$, $F_1 = 1$, and for $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$.

Definition

A generalized Fibonacci sequence $\{w_n\}$ is given by $w_0 = c, w_1 = d$ and for $n \ge 2$, $w_n = aw_{n-1} + bw_{n-2}$, where $a, b, c, d \in \mathbb{Z}$.

Check out Kalman, D., & Mena, R. (2003). *The Fibonacci Numbers: Exposed. Mathematics Magazine*, *76*(3), 167–181.

Examples

a = 1, b = 1, c = 0, d = 1: { F_n } Fibonacci seq. 0, 1, 1, 2, 3, 5, 8, ... a = 1, b = 1, c = 2, d = 1: { L_n } Lucas seq. 2, 1, 3, 4, 7, 11, 18, ... a = 2, b = 1, c = 0, d = 1: { P_n } Pell seq. 0, 1, 2, 5, 12, 29, 70, ... a = 1, b = 2, c = 0, d = 1: { J_n } Jacobsthal seq. 0, 1, 1, 3, 5, 11, 21, ...

Bicknell-Johnson (1979)

				and the second sec	
т	n	2mn	$m^2 - n^2$	$m^2 + n^2$	
2	1	4	$3 = F_{4}$	$5 = F_5$	
3	2	12	$5 = F_5$	$13 = \tilde{F}_7$	
3	1	6	$8 = F_{6}$	10	(not primitive)
4	1	$8 = F_6$	15	17	
4 7	6	84	$13 = F_7$	85	
5	2	20	$21 = F_8$	29	
11	10	220	$21 = F_8$	221	
5	3	30	16	$34 = F_{9}$	(not primitive)
17	1	$34 = F_{9}$	288	290	(not primitive)
8	3	48	$55 = F_{10}$	73	
28	27	1512	$55 = F_{10}$	1513	
8	5	80	39	$89 = F_{11}$	
45	44	3960	$F_{11} = 89$	3961	
37	35	2590	$144 = F_{12}$	2594	(not primitive)
20	16	640	$144 = F_{12}$	656	(not primitive)
15	9	270	$144 = F_{12}$	306	(not primitive)
13	5	130	$144 = F_{12}$	194	(not primitive)
9	8	$144 = F_{12}$	17	145	
72	1	$144 = F_{12}$	5183	5185	
36	2	$144 = F_{12}$	1292	1300	(not primitive)
24	3	F12	567	585	(not primitive)
18	4	F12	308	340	(not primitive)
12	6	F12	108	180	(not primitive)
13	8	208	105	$233 = F_{13}$	
117	116	27144	$233 = F_{13}$	27145	
16	11	352	135	$377 = F_{14}$	
19	4	152	345	$377 = F_{14}$	

J. Austin

Pythagorean Triples and Generalized Fibonacci Numbers6 / 25

Bicknell-Johnson (1979)

m	п	$m^2 - n^2$	2mn	$m^2 + n^2$	k
F_{k+1}	F_k	$F_{k+2}F_{k-1}$	$2F_{k+1}F_k$	F_{2k+1}	$k \ge 2$
F_{k+1}	F_{k-1}	F_{2k}	$2F_{k+1}F_{k-1}$	$F_k^2 + 2F_{k-1}F_{k+1}$	$k \ge 2$
F_k	1	$F_{k}^{2} - 1$	$2F_k$	$F_{k}^{2} + 1$	$k \ge 3$
$\frac{F_{6k}}{2}$	1	$\frac{(F_{6k}^2-4)}{4}$	F _{6k}	$\frac{(F_{6k}^2+4)}{4}$	$k \ge 1$
$\boxed{\frac{F_{3k+1}+1}{2}}$	$\frac{F_{3k+1}-1}{2}$	F_{3k+1}	$\frac{F_{3k+1}^2-1}{2}$	$\frac{F_{3k+1}^2+1}{2}$	$k \ge 1$
$\frac{F_{3k-1}+1}{2}$	$\frac{F_{3k-1}-1}{2}$	F_{3k-1}	$\frac{F_{3k-1}^2 - 1}{2}$	$\frac{F_{3k-1}^2+1}{2}$	$k \ge 2$

Hall (1970)

Thinking of the PTs in the tree as column vectors, you can traverse the tree using these matrices:

$$U = \begin{bmatrix} 1 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{bmatrix}$$
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$$
$$D = \begin{bmatrix} -1 & 2 & 2 \\ -2 & 1 & 2 \\ -2 & 2 & 3 \end{bmatrix}$$

Hall (1970)

 $UAU \cdots$ and $AUA \cdots$: primitive PTs where *m* and *n* are Fibonacci numbers

Hall (1970)

 $UAU \cdots$ and $AUA \cdots$: primitive PTs where *m* and *n* are Fibonacci numbers

m	n	PT	Matrix
2	1	(3,4,5)	1
3	2	(5,12,13)	U
5	2	(21,20,29)	A
8	5	(39,80,89)	UA
8	3	(55,48,73)	AU
13	8	(105,208,233)	UAU
21	8	(377,336,505)	AUA

Price (2011)

Price (2011)

You can also traverse Price's tree in a similar way as Hall's by treating the primitive PTs as column vectors and using the matrices

$$M_1 = egin{bmatrix} 2 & 1 & -1 \ -2 & 2 & 2 \ -2 & 1 & 3 \end{bmatrix}, M_2 = egin{bmatrix} 2 & 1 & 1 \ 2 & -2 & 2 \ 2 & -1 & 3 \end{bmatrix}, M_3 = egin{bmatrix} 2 & -1 & 1 \ 2 & 2 & 2 \ 2 & 1 & 3 \end{bmatrix}.$$

Powers of Hall's and Price's Matrices

Fibonacci numbers and generalized Fibonacci numbers appear in powers of some of these matrices:

Theorem For all $n \in \mathbb{N}$. $A^{n} = \begin{bmatrix} \frac{P_{2n} + P_{2n-1} + (-1)^{n}}{2} & \frac{P_{2n} + P_{2n-1} + (-1)^{n-1}}{2} & P_{2n} \\ \frac{P_{2n} + P_{2n-1} + (-1)^{n-1}}{2} & \frac{P_{2n} + P_{2n-1} + (-1)^{n}}{2} & P_{2n} \\ P_{2n} & P_{2n} & P_{2n} + P_{2n-1} \end{bmatrix}$ $(UA)^{n} = \begin{bmatrix} \frac{1}{2}F_{3n}^{2} + (-1)^{n} & F_{3n}^{2} & \frac{1}{2}F_{6n} \\ F_{3n}^{2} & 2F_{3n}^{2} + (-1)^{n} & F_{6n} \\ \frac{1}{2}F_{6n} & F_{6n} & \frac{5}{2}F_{3n}^{2} + (-1)^{n} \end{bmatrix}$

Theorem

$$(AU)^{n} = \begin{bmatrix} \frac{5}{2}F_{3n}^{2} + (-1)^{n} & -F_{6n} & \frac{3}{2}F_{6n} \\ F_{6n} & (-1)^{n} - 2F_{3n}^{2} & 3F_{3n}^{2} \\ \frac{3}{2}F_{6n} & -3F_{3n}^{2} & \frac{9}{2}F_{3n}^{2} + (-1)^{n} \end{bmatrix}$$

$$(DA)^{n} = \begin{bmatrix} 2F_{3n}^{2} + (-1)^{n} & F_{3n}^{2} & F_{6n} \\ F_{3n}^{2} & \frac{1}{2}F_{3n}^{2} + (-1)^{n} & \frac{1}{2}F_{6n} \\ F_{6n} & \frac{1}{2}F_{6n} & \frac{5}{2}F_{3n}^{2} + (-1)^{n} \end{bmatrix}$$

$$(AD)^{n} = \begin{bmatrix} (-1)^{n} - 2F_{3n}^{2} & F_{6n} & 3F_{3n}^{2} \\ -F_{6n} & \frac{5}{2}F_{3n}^{2} + (-1)^{n} & \frac{3}{2}F_{6n} \\ -3F_{3n}^{2} & \frac{3}{2}F_{6n} & \frac{9}{2}F_{3n}^{2} + (-1)^{n} \end{bmatrix}$$

Powers of Hall's and Price's Matrices

Theorem

For all $n \in \mathbb{N}$,

$$M_{2}^{n} = \begin{bmatrix} 2^{n}J_{n} + 4J_{n-1}^{2} & (-1)^{n+1}J_{n} & 2^{n}J_{n} + 4J_{n-1}^{2} - 1 \\ 2^{n}J_{n} & (-2)^{n} & 2^{n}J_{n} \\ 2^{n}J_{n} + 4J_{n}J_{n-1} & (-1)^{n}J_{n} & 2^{n}J_{n} + 4J_{n}J_{n-1} + 1 \end{bmatrix}$$

Definition

A Pythagorean triple preserving matrix (PTPM) is a 3×3 matrix that transforms any PT into another PT.

Other PTPMs with Fibonacci Numbers

Theorem

Let
$$B = \begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix}$$
. Then for all $n \in \mathbb{N}$,
$$B^{n} = \begin{bmatrix} \frac{1}{2}F_{n}^{2} + (-1)^{n} & F_{n}^{2} & \frac{1}{2}F_{2n} \\ F_{n}^{2} & 2F_{n}^{2} + (-1)^{n} & F_{2n} \\ \frac{1}{2}F_{2n} & F_{2n} & \frac{5}{2}F_{n}^{2} + (-1)^{n} \end{bmatrix}$$

Other PTPMs with Fibonacci Numbers

Example

$$\begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ 12 \\ 13 \end{bmatrix} (2,1) \mapsto (3,2)$$
$$\begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 5 \\ 12 \\ 13 \end{bmatrix} = \begin{bmatrix} 16 \\ 30 \\ 34 \end{bmatrix} (3,2) \mapsto (5,3)$$
$$\begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 16 \\ 30 \\ 34 \end{bmatrix} = \begin{bmatrix} 39 \\ 80 \\ 89 \end{bmatrix} (5,3) \mapsto (8,5)$$

Other PTPMs with Fibonacci Numbers

Theorem

Suppose $\{w_n\}$ is given by $w_0 = c, w_1 = d$ and for $n \ge 2$, $w_n = aw_{n-1} + bw_{n-2}$, where $a, b, c, d \in \mathbb{Z}$. The following matrix is a PTPM and transforms a PT generated by consecutive terms of w_k into the next such PT.

$$M_{a,b} = \begin{bmatrix} \frac{a^2 - b^2 - 1}{2} & ab & \frac{a^2 + b^2 - 1}{2} \\ a & b & a \\ \frac{a^2 - b^2 + 1}{2} & ab & \frac{a^2 + b^2 + 1}{2} \end{bmatrix}$$

Example

$$\begin{bmatrix} -\frac{1}{2} & 1 & \frac{1}{2} \\ 1 & 1 & 1 \\ \frac{1}{2} & 1 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix} \begin{bmatrix} -2 & 2 & 2 \\ 1 & 2 & 1 \\ -1 & 2 & 3 \end{bmatrix}$$

Fibonacci Pell Jacobsthal

Other PTPMs with Fibonacci Numbers

Theorem

Let $\{t_n\}$ be the sequence defined by $t_0 = 0$, $t_1 = 1$ and $t_n = at_{n-1} + t_{n-2}$ for $n \ge 2$. Then, for $n \ge 1$,

$$M_{a,1}^{n} = \begin{bmatrix} \frac{a^{2}}{2}t_{n}^{2} + (-1)^{n} & at_{n}^{2} & \frac{a}{2}t_{2n} \\ \\ at_{n}^{2} & 2t_{n}^{2} + (-1)^{n} & t_{2n} \\ \\ \\ \frac{a}{2}t_{2n} & t_{2n} & \left(\frac{a^{2}}{2} + 2\right)t_{n}^{2} + (-1)^{n} \end{bmatrix}.$$

Other PTPMs with Fibonacci Numbers

Theorem

Let
$$B = \begin{bmatrix} 6 & 2 & 6 \\ 2 & 3 & 3 \\ 6 & 3 & 7 \end{bmatrix}$$
. Then, for all $n \in \mathbb{N}$,
$$B^{n} = 2^{n-1} \begin{bmatrix} 4F_{2n}^{2} + 2 & 2F_{2n}^{2} & 2F_{4n} \\ 2F_{2n}^{2} & F_{2n}^{2} + 2 & F_{4n} \\ 2F_{4n} & F_{4n} & 5F_{2n}^{2} + 2 \end{bmatrix}$$

Other PTPMs with Fibonacci Numbers

Other PTPMs with Fibonacci Numbers

Theorem	
	be a PT in rst-form. Then, $\begin{bmatrix} r & s & t \\ s & r & t \\ t & t & r+s \end{bmatrix}$
is a PTPM.	
Examples	
$t = 2, r = 1, s = 2$ $\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3 \end{bmatrix}$	$t = 12, r = 9, s = 8$ $\begin{bmatrix} 9 & 8 & 12 \\ 8 & 9 & 12 \\ 12 & 12 & 17 \end{bmatrix}$

Other PTPMs with Fibonacci Numbers

Theorem

Let $k \in \mathbb{N}$. Then, each of the following is a PTPM.

$$\begin{bmatrix} \frac{F_{3k}^2}{4} & 2 & F_{3k} \\ 2 & \frac{F_{3k}^2}{4} & F_{3k} \\ F_{3k} & F_{3k} & \frac{F_{3k}^2}{4} + 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \frac{F_{3k}^2}{2} & F_{3k} \\ \frac{F_{3k}^2}{2} & 1 & F_{3k} \\ F_{3k} & F_{3k} & \frac{F_{3k}^2}{2} + 1 \end{bmatrix}$$

$$\begin{bmatrix} F_{k-1}^2 & 2F_k^2 & 2F_kF_{k-1} \\ 2F_k^2 & F_{k-1}^2 & 2F_kF_{k-1} \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_{k-1}^2 + 2F_k^2 \end{bmatrix}$$

J. Austin

Theorem

$$\left\{ \begin{array}{cccc} F_k^2 & 2F_{k-1}^2 & 2F_kF_{k-1} \\ 2F_{k-1}^2 & F_k^2 & 2F_kF_{k-1} \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_k^2 + 2F_{k-1}^2 \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_k^2 + 2F_{k-1}^2 \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_k^2 + 2F_{k-1}^2 \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_kF_{k-1} \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_kF_{k-1} \\ 2F_kF_{k-1} & 2F_kF_{k-1} & F_{k-1} \\ 2F_kF_{k-1} & 2F_kF_{k-1} \\ 2F_{k-1} & 2F_{k-1} \\ 2F_{k-1} & 2F_{k-$$

Pythagorean Triples and Generalized Fibonacci Numbers24 / 25

A Few References

- H.W. Austin and J.W. Austin, *On a Special Set of Symmetric Pythagorean Triple Preserving Matrices*, Advances and Applications in Mathematical Sciences **12** (2012), 97–104.
- J. Austin and L. Schneider, *Generalized Fibonacci Numbers in PTPMs*, The Fibonacci Quarterly **58.4** (2020) 340–350.
- J. Austin, On Pythagorean triple preserving matrices that contain Fibonacci numbers, The Fibonacci Quarterly (in press).

Thanks! jwaustin@salisbury.edu