Pythagorean Triples and Generalized Fibonacci Numbers

Jathan Austin

Salisbury University

(1) Pythagorean Triples

(2) The Fibonacci Sequence

(3) Known Connections

4. Newer Connections

Definition

A Pythagorean triple (PT) is an ordered triple of positive integers, (a, b, c), such that $a^{2}+b^{2}=c^{2}$. The PT is called primitive provided $\operatorname{gcd}(a, b, c)=1$.

Definition

A Pythagorean triple (PT) is an ordered triple of positive integers, (a, b, c), such that $a^{2}+b^{2}=c^{2}$. The PT is called primitive provided $\operatorname{gcd}(a, b, c)=1$.

Theorem

Let (a, b, c) be a PT. (a, b, c) is primitive if and only if it can be written in the form $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$ where $m, n \in \mathbb{N}, m>n, \operatorname{gcd}(m, n)=1$, and $m+n$ is odd.

Definition

A Pythagorean triple (PT) is an ordered triple of positive integers, (a, b, c), such that $a^{2}+b^{2}=c^{2}$. The PT is called primitive provided $\operatorname{gcd}(a, b, c)=1$.

Theorem

Let (a, b, c) be a PT. (a, b, c) is primitive if and only if it can be written in the form $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$ where $m, n \in \mathbb{N}, m>n, \operatorname{gcd}(m, n)=1$, and $m+n$ is odd.

Theorem

Let t be an even positive integer and $r, s \in \mathbb{N}$ such that $t^{2}=2 r s$. Then, $(r+t, s+t, r+s+t)$ is a PT. The PT is primitive if and only if $\operatorname{gcd}(r, s)=1$.

WLOG, we'll assume s is even.

Forms of PTs

Example

Let $t=12 . t^{2}=2 \cdot 72$, so we have several choices for r and s :
$r=1, s=72:(13,84,85)$
$r=2, s=36:(14,48,50)$
$r=3, s=24:(15,36,39)$
$r=4, s=18:(16,30,34)$
$r=6, s=12:(18,24,30)$
$r=8, s=9: \quad(20,21,29)$

Definition

The Fibonacci sequence, $\left\{F_{n}\right\}$ is given by $F_{0}=0, F_{1}=1$, and for $n \geq 2$, $F_{n}=F_{n-1}+F_{n-2}$.

Definition

The Fibonacci sequence, $\left\{F_{n}\right\}$ is given by $F_{0}=0, F_{1}=1$, and for $n \geq 2$, $F_{n}=F_{n-1}+F_{n-2}$.

Definition

A generalized Fibonacci sequence $\left\{w_{n}\right\}$ is given by $w_{0}=c, w_{1}=d$ and for $n \geq 2, w_{n}=a w_{n-1}+b w_{n-2}$, where $a, b, c, d \in \mathbb{Z}$.

Check out Kalman, D., \& Mena, R. (2003). The Fibonacci Numbers: Exposed. Mathematics Magazine, 76(3), 167-181.

Definition

The Fibonacci sequence, $\left\{F_{n}\right\}$ is given by $F_{0}=0, F_{1}=1$, and for $n \geq 2$, $F_{n}=F_{n-1}+F_{n-2}$.

Definition

A generalized Fibonacci sequence $\left\{w_{n}\right\}$ is given by $w_{0}=c, w_{1}=d$ and for $n \geq 2, w_{n}=a w_{n-1}+b w_{n-2}$, where $a, b, c, d \in \mathbb{Z}$.

Check out Kalman, D., \& Mena, R. (2003). The Fibonacci Numbers: Exposed. Mathematics Magazine, 76(3), 167-181.

Examples

$a=1, b=1, c=0, d=1:\left\{F_{n}\right\}$ Fibonacci seq. $0,1,1,2,3,5,8, \cdots$
$a=1, b=1, c=2, d=1:\left\{L_{n}\right\}$ Lucas seq. $2,1,3,4,7,11,18, \cdots$
$a=2, b=1, c=0, d=1:\left\{P_{n}\right\}$ Pell seq. $0,1,2,5,12,29,70, \cdots$
$a=1, b=2, c=0, d=1:\left\{J_{n}\right\}$ Jacobsthal seq. $0,1,1,3,5,11,21, \cdots$

Pythagorean Triples
The Fibonacci Sequence Known Connections Newer Connections

Bicknell-Johnson (1979)

m	n	2 m	$m^{2}-n^{2}$	$m^{2}+n^{2}$	
2	1	4	$3=F_{4}$	$5=F_{5}$	
3	2	12	$5=F_{5}$	$13=F_{7}$	
3	1	6	$8=F_{6}$	10	(not primitive)
4	1	$8=F_{6}$	15	17	
7	6	84	$13=F_{7}$	85	
5	2	20	$21=F_{8}$	29	
11	10	220	$21=F_{8}$	221	
5	3	30	16	$34=E_{9}$	(not primitive)
17	1	$34=F_{9}$	288	290	(not primitive)
8	3	48	$55=F_{10}$	73	
28	27	1512	$55=F_{10}$	1513	
8	5	80	39	$89=F_{11}$	
45	44	3960	$F_{11}=89$	3961	
37	35	2590	$144=E_{12}$	2594	(not primitive)
20	16	640	$144=F_{12}$	656	(not primitive)
15	9	270	$144=F_{12}$	306	(not primitive)
13	5	130	$144=F_{12}$	194	(not primitive)
9	8	$144=F_{12}$	17	145	
72	1	$144=F_{12}$	5183	5185	
36	2	$144=F_{12}$	1292	1300	(ot primitive)
24	3	F_{12}	567	585	(not primitive)
18	4	F_{12}	308	340	(not primitive)
12	6	F_{12}	108	180	(not primitive)
13	8	208	105	$233=F_{13}$	
117	116	27144	$233=F_{13}$	27145	
16	11	352	135	$377=F_{14}$	
19	4	152	345	$377=F_{14}$	

Bicknell-Johnson (1979)

m	n	$m^{2}-n^{2}$	$2 m n$	$m^{2}+n^{2}$	k
F_{k+1}	F_{k}	$F_{k+2} F_{k-1}$	$2 F_{k+1} F_{k}$	$F_{2 k+1}$	$k \geq 2$
F_{k+1}	F_{k-1}	$F_{2 k}$	$2 F_{k+1} F_{k-1}$	$F_{k}^{2}+2 F_{k-1} F_{k+1}$	$k \geq 2$
F_{k}	1	$F_{k}^{2}-1$	$2 F_{k}$	$F_{k}^{2}+1$	$k \geq 3$
$\frac{F_{6 k}}{2}$	1	$\frac{\left(F_{6 k}^{2}-4\right)}{4}$	$F_{6 k}$	$\frac{\left(F_{6 k}^{2}+4\right)}{4}$	$k \geq 1$
$\frac{F_{3 k+1}+1}{2}$	$\frac{F_{3 k+1}-1}{2}$	$F_{3 k+1}$	$\frac{F_{3 k+1}^{2}-1}{2}$	$\frac{F_{3 k+1}^{2}+1}{2}$	$k \geq 1$
$\frac{F_{3 k-1}+1}{2}$	$\frac{F_{3 k-1}-1}{2}$	$F_{3 k-1}$	$\frac{F_{3 k-1}^{2}-1}{2}$	$\frac{F_{3 k-1}^{2}+1}{2}$	$k \geq 2$

Hall (1970)

Thinking of the PTs in the tree as column vectors, you can traverse the tree using these matrices:

$$
\begin{aligned}
U & =\left[\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right] \\
A & =\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \\
D & =\left[\begin{array}{lll}
-1 & 2 & 2 \\
-2 & 1 & 2 \\
-2 & 2 & 3
\end{array}\right]
\end{aligned}
$$

Hall (1970)

$U A U \cdots$ and $A U A \cdots$: primitive PTs where m and n are Fibonacci numbers

Hall (1970)

$U A U \cdots$ and $A U A \cdots$: primitive PTs where m and n are Fibonacci numbers

m	n	PT	Matrix
2	1	$(3,4,5)$	l
3	2	$(5,12,13)$	U
5	2	$(21,20,29)$	A
8	5	$(39,80,89)$	$U A$
8	3	$(55,48,73)$	$A U$
13	8	$(105,208,233)$	$U A U$
21	8	$(377,336,505)$	$A U A$

Price (2011)

Price (2011)

You can also traverse Price's tree in a similar way as Hall's by treating the primitive PTs as column vectors and using the matrices

$$
M_{1}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-2 & 2 & 2 \\
-2 & 1 & 3
\end{array}\right], M_{2}=\left[\begin{array}{ccc}
2 & 1 & 1 \\
2 & -2 & 2 \\
2 & -1 & 3
\end{array}\right], M_{3}=\left[\begin{array}{ccc}
2 & -1 & 1 \\
2 & 2 & 2 \\
2 & 1 & 3
\end{array}\right]
$$

Powers of Hall's and Price's Matrices

Fibonacci numbers and generalized Fibonacci numbers appear in powers of some of these matrices:

Theorem

For all $n \in \mathbb{N}$,
(1) $A^{n}=\left[\begin{array}{ccc}\frac{P_{2 n}+P_{2 n-1}+(-1)^{n}}{2} & \frac{P_{2 n}+P_{2 n-1}+(-1)^{n-1}}{2} & P_{2 n} \\ \frac{P_{2 n}+P_{2 n-1}+(-1)^{n-1}}{2} & \frac{P_{2 n}+P_{2 n-1}+(-1)^{n}}{2} & P_{2 n} \\ P_{2 n} & P_{2 n} & P_{2 n}+P_{2 n-1}\end{array}\right]$
(2) $(U A)^{n}=\left[\begin{array}{ccc}\frac{1}{2} F_{3 n}^{2}+(-1)^{n} & F_{3 n}^{2} & \frac{1}{2} F_{6 n} \\ F_{3 n}^{2} & 2 F_{3 n}^{2}+(-1)^{n} & F_{6 n} \\ \frac{1}{2} F_{6 n} & F_{6 n} & \frac{5}{2} F_{3 n}^{2}+(-1)^{n}\end{array}\right]$

Theorem

(3) $(A U)^{n}=\left[\begin{array}{ccc}\frac{5}{2} F_{3 n}^{2}+(-1)^{n} & -F_{6 n} & \frac{3}{2} F_{6 n} \\ F_{6 n} & (-1)^{n}-2 F_{3 n}^{2} & 3 F_{3 n}^{2} \\ \frac{3}{2} F_{6 n} & -3 F_{3 n}^{2} & \frac{9}{2} F_{3 n}^{2}+(-1)^{n}\end{array}\right]$
(4) $(D A)^{n}=\left[\begin{array}{ccc}2 F_{3 n}^{2}+(-1)^{n} & F_{3 n}^{2} & F_{6 n} \\ F_{3 n}^{2} & \frac{1}{2} F_{3 n}^{2}+(-1)^{n} & \frac{1}{2} F_{6 n} \\ F_{6 n} & \frac{1}{2} F_{6 n} & \frac{5}{2} F_{3 n}^{2}+(-1)^{n}\end{array}\right]$
(5) $(A D)^{n}=\left[\begin{array}{ccc}(-1)^{n}-2 F_{3 n}^{2} & F_{6 n} & 3 F_{3 n}^{2} \\ -F_{6 n} & \frac{5}{2} F_{3 n}^{2}+(-1)^{n} & \frac{3}{2} F_{6 n} \\ -3 F_{3 n}^{2} & \frac{3}{2} F_{6 n} & \frac{9}{2} F_{3 n}^{2}+(-1)^{n}\end{array}\right]$

Powers of Hall's and Price's Matrices

Theorem

For all $n \in \mathbb{N}$,

$$
M_{2}^{n}=\left[\begin{array}{ccc}
2^{n} J_{n}+4 J_{n-1}^{2} & (-1)^{n+1} J_{n} & 2^{n} J_{n}+4 J_{n-1}^{2}-1 \\
2^{n} J_{n} & (-2)^{n} & 2^{n} J_{n} \\
2^{n} J_{n}+4 J_{n} J_{n-1} & (-1)^{n} J_{n} & 2^{n} J_{n}+4 J_{n} J_{n-1}+1
\end{array}\right]
$$

PTPMs

Definition

A Pythagorean triple preserving matrix (PTPM) is a 3×3 matrix that transforms any PT into another PT.

Other PTPMs with Fibonacci Numbers

Theorem

$$
\begin{aligned}
& \text { Let } B= {\left[\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right] \text {. Then for all } n \in \mathbb{N}, } \\
& B^{n}=\left[\begin{array}{ccc}
\frac{1}{2} F_{n}^{2}+(-1)^{n} & F_{n}^{2} & \frac{1}{2} F_{2 n} \\
F_{n}^{2} & 2 F_{n}^{2}+(-1)^{n} & F_{2 n} \\
\frac{1}{2} F_{2 n} & F_{2 n} & \frac{5}{2} F_{n}^{2}+(-1)^{n}
\end{array}\right]
\end{aligned}
$$

Other PTPMs with Fibonacci Numbers

Example

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
5 \\
12 \\
13
\end{array}\right](2,1) \mapsto(3,2)} \\
& {\left[\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
5 \\
12 \\
13
\end{array}\right]=\left[\begin{array}{l}
16 \\
30 \\
34
\end{array}\right](3,2) \mapsto(5,3)} \\
& {\left[\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{l}
16 \\
30 \\
34
\end{array}\right]=\left[\begin{array}{l}
39 \\
80 \\
89
\end{array}\right](5,3) \mapsto(8,5)}
\end{aligned}
$$

Other PTPMs with Fibonacci Numbers

Theorem

Suppose $\left\{w_{n}\right\}$ is given by $w_{0}=c, w_{1}=d$ and for $n \geq 2$, $w_{n}=a w_{n-1}+b w_{n-2}$, where $a, b, c, d \in \mathbb{Z}$. The following matrix is a PTPM and transforms a PT generated by consecutive terms of w_{k} into the next such PT.

$$
M_{a, b}=\left[\begin{array}{ccc}
\frac{a^{2}-b^{2}-1}{2} & a b & \frac{a^{2}+b^{2}-1}{2} \\
a & b & a \\
\frac{a^{2}-b^{2}+1}{2} & a b & \frac{a^{2}+b^{2}+1}{2}
\end{array}\right]
$$

Example

$$
\left[\begin{array}{ccc}
-\frac{1}{2} & 1 & \frac{1}{2} \\
1 & 1 & 1 \\
\frac{1}{2} & 1 & \frac{3}{2}
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 3
\end{array}\right] \quad\left[\begin{array}{ccc}
-2 & 2 & 2 \\
1 & 2 & 1 \\
-1 & 2 & 3
\end{array}\right]
$$

Fibonacci Pell Jacobsthal

Other PTPMs with Fibonacci Numbers

Theorem

Let $\left\{t_{n}\right\}$ be the sequence defined by $t_{0}=0, t_{1}=1$ and $t_{n}=a t_{n-1}+t_{n-2}$ for $n \geq 2$. Then, for $n \geq 1$,

$$
M_{a, 1}^{n}=\left[\begin{array}{ccc}
\frac{a^{2}}{2} t_{n}^{2}+(-1)^{n} & a t_{n}^{2} & \frac{a}{2} t_{2 n} \\
a t_{n}^{2} & 2 t_{n}^{2}+(-1)^{n} & t_{2 n} \\
\frac{a}{2} t_{2 n} & t_{2 n} & \left(\frac{a^{2}}{2}+2\right) t_{n}^{2}+(-1)^{n}
\end{array}\right]
$$

Other PTPMs with Fibonacci Numbers

Theorem
Let $B=\left[\begin{array}{lll}6 & 2 & 6 \\ 2 & 3 & 3 \\ 6 & 3 & 7\end{array}\right]$. Then, for all $n \in \mathbb{N}$,

$$
B^{n}=2^{n-1}\left[\begin{array}{ccc}
4 F_{2 n}^{2}+2 & 2 F_{2 n}^{2} & 2 F_{4 n} \\
2 F_{2 n}^{2} & F_{2 n}^{2}+2 & F_{4 n} \\
2 F_{4 n} & F_{4 n} & 5 F_{2 n}^{2}+2
\end{array}\right]
$$

Other PTPMs with Fibonacci Numbers

Theorem

Let $(r+t, s+t, r+s+t)$ be a PT in rst-form. Then, $\left[\begin{array}{ccc}r & s & t \\ s & r & t \\ t & t & r+s\end{array}\right]$ is a PTPM.

Other PTPMs with Fibonacci Numbers

Theorem

Let $(r+t, s+t, r+s+t)$ be a PT in rst-form. Then, $\left[\begin{array}{ccc}r & s & t \\ s & r & t \\ t & t & r+s\end{array}\right]$ is a PTPM.

Examples

$t=2, r=1, s=2$	$t=12, r=9, s=8$
$\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 3\end{array}\right]$	$\left[\begin{array}{ccc}9 & 8 & 12 \\ 8 & 9 & 12 \\ 12 & 12 & 17\end{array}\right]$

Other PTPMs with Fibonacci Numbers

Theorem

Let $k \in \mathbb{N}$. Then, each of the following is a PTPM.
(1) $\left[\begin{array}{ccc}\frac{F_{3 k}^{2}}{4} & 2 & F_{3 k} \\ 2 & \frac{F_{3 k}^{2}}{4} & F_{3 k} \\ F_{3 k} & F_{3 k} & \frac{F_{3 k}^{2}}{4}+2\end{array}\right]$
(2) $\left[\begin{array}{ccc}1 & \frac{F_{3 k}^{2}}{2} & F_{3 k} \\ \frac{F_{3 k}^{2}}{2} & 1 & F_{3 k} \\ F_{3 k} & F_{3 k} & \frac{F_{3 k}^{2}}{2}+1\end{array}\right]$
(3) $\left[\begin{array}{ccc}F_{k-1}^{2} & 2 F_{k}^{2} & 2 F_{k} F_{k-1} \\ 2 F_{k}^{2} & F_{k-1}^{2} & 2 F_{k} F_{k-1} \\ 2 F_{k} F_{k-1} & 2 F_{k} F_{k-1} & F_{k-1}^{2}+2 F_{k}^{2}\end{array}\right]$

Theorem

(4) $\left[\begin{array}{ccc}F_{k}^{2} & 2 F_{k-1}^{2} & 2 F_{k} F_{k-1} \\ 2 F_{k-1}^{2} & F_{k}^{2} & 2 F_{k} F_{k-1} \\ 2 F_{k} F_{k-1} & 2 F_{k} F_{k-1} & F_{k}^{2}+2 F_{k-1}^{2}\end{array}\right]$
(5) $\left[\begin{array}{ccc}\left(F_{k}-1\right)^{2} & 2 & 2\left(F_{k}-1\right) \\ 2 & \left(F_{k}-1\right)^{2} & 2\left(F_{k}-1\right) \\ 2\left(F_{k}-1\right) & 2\left(F_{k}-1\right) & \left(F_{k}-1\right)^{2}+2\end{array}\right]$
(6) $\left[\begin{array}{ccc}\frac{\left(F_{6 k}-2\right)^{2}}{4} & 2 & F_{6 k}-2 \\ 2 & \frac{\left(F_{6 k}-2\right)^{2}}{4} & F_{6 k}-2 \\ F_{6 k}-2 & F_{6 k}-2 & \frac{\left(F_{6 k}-2\right)^{2}}{4}+2\end{array}\right]$
(7) $\left[\begin{array}{ccc}1 & \frac{\left(F_{3 k+1}-1\right)^{2}}{2} & F_{3 k+1}-1 \\ \frac{\left(F_{3 k+1}-1\right)^{2}}{2} & 1 & F_{3 k+1}-1 \\ F_{3 k+1}-1 & F_{3 k+1}-1 & \frac{\left(F_{3 k+1}^{2}-1\right)^{2}}{2}+1\end{array}\right]$
(8) $\left[\begin{array}{ccc}1 & \frac{\left(F_{3 k-1}-1\right)^{2}}{2} & F_{3 k-1}-1 \\ \frac{\left(F_{3 k-1}-1\right)^{2}}{2} & 1 & F_{3 k-1}-1 \\ F_{3 k-1}-1 & F_{3 k-1}-1 & \frac{\left(F_{3 k-1}-1\right)^{2}}{2}+1\end{array}\right]$

A Few References

R H.W. Austin and J.W. Austin, On a Special Set of Symmetric Pythagorean Triple Preserving Matrices, Advances and Applications in Mathematical Sciences 12 (2012), 97-104.

回 J. Austin and L. Schneider, Generalized Fibonacci Numbers in PTPMs, The Fibonacci Quarterly 58.4 (2020) 340-350.
J. Austin, On Pythagorean triple preserving matrices that contain Fibonacci numbers, The Fibonacci Quarterly (in press).

Thanks!
jwaustin@salisbury.edu

