Octonions, Quaternions, and Involutions

Nathaniel Schwartz
Joint work with John Hutchens

Washington College
nschwartz2@washcoll.edu

November 7th, 2015
Contents

1 Bilinear forms / Quadratic forms
2 Algebras
3 Composition algebras
4 Doubling
5 Automorphisms
6 Results
7 Interesting Things
8 Current & Future work
Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a **bilinear form** is a mapping

$$\langle \ , \ \rangle : V \times V \rightarrow k$$

that is linear in both coordinates. We say that $\langle \ , \ \rangle$ is **nondegenerate** if

$$V^\perp = \{ x \in V \mid \langle x, y \rangle = 0 \ \forall \ y \in V \} = 0.$$
Bilinear & Quadratic Forms

Let V be a finite dimensional vector space over a field k. Then a **bilinear form** is a mapping

$$\langle \ , \ \rangle : V \times V \to k$$

that is linear in both coordinates. We say that $\langle \ , \ \rangle$ is **nondegenerate** if

$$V^\perp = \{ x \in V \mid \langle x, y \rangle = 0 \ \forall \ y \in V \} = 0.$$

A **quadratic form** is a mapping

$$q : V \to k$$

such that $q(\lambda x) = \lambda^2 q(x)$ for all $x \in V$, $\lambda \in k$. This uniquely determines a bilinear form

$$\langle x, y \rangle = q(x + y) - q(x) - q(y).$$
Quadratic Forms

Notice that

\[\langle x, x \rangle = q(x + x) - q(x) - q(x) \]
\[= q(2x) - 2q(x) \]
\[= 4q(x) - 2q(x) \]
\[= 2q(x) \]

When the characteristic is not 2, the associated symmetric bilinear form defines the quadratic form. If \(k \) has characteristic 2, then \(\langle x, x \rangle = 0 \) for all \(x \in V \). Thus \(\langle , \rangle \) is alternate and symmetric, and the quadratic form cannot be recovered from the bilinear form.
Quadratic Forms

Notice that

$$\langle x, x \rangle = q(x + x) - q(x) - q(x)$$
$$= q(2x) - 2 q(x)$$
$$= 4 q(x) - 2 q(x)$$
$$= 2 q(x)$$

When the characteristic is not 2, the associated symmetric bilinear form defines the quadratic form. If k has characteristic 2, then $\langle x, x \rangle = 0$ for all $x \in V$. Thus \langle , \rangle is alternate and symmetric, and the quadratic form cannot be recovered from the bilinear form.

A vector x is called **isotropic** if $q(x) = 0$, and **anisotropic** otherwise.
Algebras

An algebra A over a field k is a vector space equipped with a multiplication which is not necessarily associative:

$$x(yz) \neq (xy)z$$

or commutative:

$$xy \neq yx.$$
Algebras

An algebra A over a field k is a vector space equipped with a multiplication which is not necessarily associative:

$$x(yz) \neq (xy)z$$

or commutative:

$$xy \neq yx.$$

Examples:
- The complex numbers over (Complex multiplication).
- Euclidean 3-space (Cross product).
- Lie algebras (Lie bracket).
- Jordan Algebras (Jordan multiplication).

Jordan algebras are commutative.
Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

$$q(xy) = q(x) q(y).$$

Composition algebras may or may not be associative.
Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

$$q(xy) = q(x)q(y).$$

Composition algebras may or may not be associative.

A subalgebra D of a composition algebra C is a linear subspace which is nonsingular, closed under multiplication, and contains the identity element e. (A subspace is nonsingular if the restriction of \langle , \rangle is nondegenerate.)
Composition Algebras

A composition algebra C is an algebra over a field together with a quadratic form which admits composition:

$$q(xy) = q(x)q(y).$$

Composition algebras may or may not be associative.

A subalgebra D of a composition algebra C is a linear subspace which is nonsingular, closed under multiplication, and contains the identity element e. (A subspace is nonsingular if the restriction of $\langle \ , \ \rangle$ is nondegenerate.)

Notice that, so far, there has been no restriction made on the dimension of a composition algebra.
Doubling

Let C be a composition algebra, and let D be a finite-dimensional subalgebra. Then D is a nonsingular subspace, so $C = D \oplus D^\perp$, and D^\perp is also nonsingular.

Lemma

If D is a finite-dimensional proper subalgebra of C, then there exists $a \in D^\perp$ so that $q(a) \neq 0$, then $D_1 = D \oplus Da$ is a composition subalgebra.

Note: the quadratic form, product and conjugation on D_1 require attention.
Doubling

Let C be a composition algebra, and let D be a finite-dimensional subalgebra. Then D is a nonsingular subspace, so $C = D \oplus D^\perp$, and D^\perp is also nonsingular.

Lemma

If D is a finite-dimensional proper subalgebra of C, then there exists $a \in D^\perp$ so that $q(a) \neq 0$, then $D_1 = D \oplus Da$ is a composition subalgebra.

Note: the quadratic form, product and conjugation on D_1 require attention.

Also notice that Da and D have the same dimension, so that D_1 has twice the dimension of D. In other words, we’ve just doubled D.

Lemma

If C is a composition algebra and D is a finite-dimensional proper subalgebra, then D is associative. Moreover, a subalgebra $D \oplus Da$ is associative if and only if D is both associative and commutative.
Doubling

Lemma

If \(C \) is a composition algebra and \(D \) is a finite-dimensional proper subalgebra, then \(D \) is associative. Moreover, a subalgebra \(D \oplus Da \) is associative if and only if \(D \) is both associative and commutative.

Lemma

Let \(D \) be a composition algebra, and let \(\lambda \in k^* \), and let \(C = D \oplus D \).

1. If \(D \) is associative, then \(C \) is a composition algebra.
2. \(C \) is associative if and only if \(D \) is commutative and associative.
Differences in Low Dimension

Lemma
Let C be a composition algebra of k. If $\text{char}(k) \neq 2$, then $D = ke$ is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If $\text{char}(k) = 2$, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

In case $\text{char}(k) = 2$, take some $\langle a, e \rangle \neq 0$. Then a 2-dimensional composition algebra is $ke \oplus ka$. In either case, we get a 2-dimensional composition algebra.
Differences in Low Dimension

Lemma

Let C be a composition algebra of k. If $	ext{char}(k) \neq 2$, then $D = ke$ is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If $	ext{char}(k) = 2$, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).
Differences in Low Dimension

Lemma

Let C be a composition algebra of k. If $\text{char}(k) \neq 2$, then $D = ke$ is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If $\text{char}(k) = 2$, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

In case $\text{char}(k) = 2$, take some $\langle a, e \rangle \neq 0$. Then a 2-dimensional composition algebra is $ke \oplus ka$.
Differences in Low Dimension

Lemma

Let C be a composition algebra of k. If $\text{char}(k) \neq 2$, then $D = ke$ is a composition algebra of dimension 1. A 2-dimensional algebra is obtained by doubling.

If $\text{char}(k) = 2$, then ke is singular, since $\langle e, e \rangle = 0$. (There are no 1-dimensional composition algebras in this case).

In case $\text{char}(k) = 2$, take some $\langle a, e \rangle \neq 0$. Then a 2-dimensional composition algebra is $ke \oplus ka$.

In either case, we get a 2-dimensional composition algebra.
Structure Theorem

Theorem

Every composition algebra is obtained by repeated doubling, starting from ke if $\text{char}(k) \neq 2$ or from the 2-dimensional algebra if $\text{char}(k) = 2$. In this way, we obtain algebras of dimensions 1 (if $\text{char}(k) \neq 0$), 2, 4, and 8. So we have a sequence

$$D_1 \subset D_2 \subset D_3.$$
Structure Theorem

Theorem

*Every composition algebra is obtained by repeated doubling, starting from $k e$ if $\text{char}(k) \neq 2$ or from the 2-dimensional algebra if $\text{char}(k) = 2$. In this way, we obtain algebras of dimensions 1 (if $\text{char}(k) \neq 0$), 2, 4, and 8. So we have a sequence

$$D_1 \subset D_2 \subset D_3.$$*

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative.
Structure Theorem

Theorem

Every composition algebra is obtained by repeated doubling, starting from $k e$ if $\text{char}(k) \neq 2$ or from the 2-dimensional algebra if $\text{char}(k) = 2$. In this way, we obtain algebras of dimensions 1 (if $\text{char}(k) \neq 0$), 2, 4, and 8. So we have a sequence

$$D_1 \subset D_2 \subset D_3.$$

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative. (This fact is not completely obvious).
Structure Theorem

Theorem

Every composition algebra is obtained by repeated doubling, starting from $k e$ if $\text{char}(k) \neq 2$ or from the 2-dimensional algebra if $\text{char}(k) = 2$. In this way, we obtain algebras of dimensions 1 (if $\text{char}(k) \neq 0$), 2, 4, and 8. So we have a sequence

$$D_1 \subset D_2 \subset D_3.$$

Using the lemmas, and since D_1 is commutative and associative, we have that D_2 is associative. However, D_2 is not commutative. (This fact is not completely obvious).

So D_3 is not associative, and thus no algebra properly contains D_3. So we are done.
Types of Compositions Algebras

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.
Types of Compositions Algebras

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.
Types of Compositions Algebras

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.

The 4-dimensional composition algebras are called **quaternion** algebras, and the 8-dimensional algebras are called **octonion** algebras.
Types of Compositions Algebras

A composition algebra C is called **split** if q is isotropic. If q is anisotropic, then the composition algebra is called **division**. Split algebras over the same field are isomorphic.

In the split case, the four dimensional composition algebra is isomorphic to the 2×2 matrices over k with the determinant as the quadratic form.

The 4-dimensional composition algebras are called **quaternion** algebras, and the 8-dimensional algebras are called **octonion** algebras.

It is known that all quaternion and octonion algebras are split when taken over a perfect field k of characteristic 2.
Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2. That is,

\[\text{Aut}(C) \cong G_2. \]
Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2. That is,

$$\text{Aut}(C) \simeq G_2.$$

Springer & Veldkamp show that every automorphism $g \in \text{Aut}(C)$ has the form

$$g(x + yu) = cx c^{-1} + (pcyc^{-1})u,$$

where $w \in D^\perp$, $q(w) \neq 0$, $q(p) = 1$, and $q(c) \neq 0$. Here x, y, c and $p \in D$ and $u \in D^\perp$.
Automorphism Group

Let C be an octonion algebra. The automorphisms of C that fix a quaternion subalgebra D form a group isomorphic to G_2. That is,

$$\text{Aut}(C) \simeq G_2.$$

Springer & Veldkamp show that every automorphism $g \in \text{Aut}(C)$ has the form

$$g(x + yu) = cx c^{-1} + (pcyc^{-1})u,$$

where $w \in D^\perp$, $q(w) \neq 0$, $q(p) = 1$, and $q(c) \neq 0$. Here x, y, c and $p \in D$ and $u \in D^\perp$.

Also, every automorphism of G_2 is inner.
Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of $\text{Aut}(C)$. In this case, the fixed-point group of an inner k-involution is isomorphic to

$$\text{SL}_2(k) \times G_a(k)$$
Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of $\text{Aut}(C)$. In this case, the fixed-point group of an inner k-involution is isomorphic to

$$\text{SL}_2(k) \times \text{Ga}(k)$$

For the non-split case, when k is not a perfect field of characteristic 2, we don’t know yet.
Some Preliminary Results

Theorem

Let C be an octonion algebra. If k is a perfect field of characteristic 2, there is one isomorphism class of inner k-involutions of $\text{Aut}(C)$. In this case, the fixed-point group of an inner k-involution is isomorphic to

$$\text{SL}_2(k) \times G_a(k)$$

For the non-split case, when k is not a perfect field of characteristic 2, we don’t know yet.

Question: Are there always elements of order 2 in a division quaternion algebra?
Thank you!

Questions?