Arms Race Example in Intro ODEs

David Shoenthal

Longwood University
October 27, 2012

Introduction

- Take-Home Exam
- Algebraic Solution - Investigating the Algebra

Introduction

- Take-Home Exam
- Algebraic Solution
- Investigating the Algebra
- Different Assumptions

Introduction

- Take-Home Exam
- Algebraic Solution
- Investigating the Algebra

Introduction

- Take-Home Exam
- Algebraic Solution
- Investigating the Algebra
- Different Assumptions

Elimination Method

Spring 2011

- Topic: linear equations with constant coefficients

Elimination Method

Spring 2011

- Topic: linear equations with constant coefficients
- Standard Example:

Elimination Method

Spring 2011

- Topic: linear equations with constant coefficients
- Standard Example:

Elimination Method

_ BuBBy _, "Martini Cat" November 18, 2009 via Flickr, Creative Commons Attribution.

Take-Home Exam

An application that would utilize the same techniques but provide a different interpretation.

Take-Home Exam

An application that would utilize the same techniques but provide a different interpretation.
If x and y are the expenditures for defense for two countries, suppose that they are governed by:

$$
\begin{array}{ll}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

where a and b are constants that measure the trust (or distrust) each country has for the other. Determine whether there is going to be disarmament (x and y approach 0 as t increases), a stabilized arms race (x and y approach a constant as $t \rightarrow+\infty$), or a runaway arms race (x and y approach $+\infty$ as $t \rightarrow+\infty)$.

[^0]
General Solution

Recall how we can find the solution to such a system via the elimination method:
Just like solving a regular linear system, but now with differential operator D :

$$
\begin{aligned}
(D+1)[x]-2[y] & =a \\
-4[x]+(D+3)[y] & =b,
\end{aligned}
$$

where the 1 and 3 are really just shorthand for $1 /$ and $3 /$ respectively, with I being the identity operator.

General Solution

Then apply $(D+3)$ to the top and $2(I)$ to the bottom, yielding:

$$
\begin{aligned}
(D+3)(D+1)[x]-2(D+3)[y] & =(D+3)[a] \\
-8[x]+2(D+3)[y] & =2 b .
\end{aligned}
$$

Add the two equations. The result,

$$
\left(D^{2}+4 D-5\right)[x]=3 a+2 b
$$

is now a second-order, constant-coefficient, non-homogeneous ODE, which students in the class immediately solve.

General Solution

So, with

$$
x=c_{1} e^{-5 t}+c_{2} e^{t}-\frac{3 a+2 b}{5}
$$

we back-substitute into the first ODE and solve for y as well:

General Solution

So, with

$$
x=c_{1} e^{-5 t}+c_{2} e^{t}-\frac{3 a+2 b}{5}
$$

we back-substitute into the first ODE and solve for y as well:

$$
y=-2 c_{1} e^{-5 t}+c_{2} e^{t}-\frac{4 a+b}{5}
$$

Particular Solution

The problem gave us some initial conditions, so applying the fact that $x(0)=1$ and $y(0)=4$ yields the answer:

$$
\begin{aligned}
& x(t)=\left(-1+\frac{b}{15}-\frac{a}{15}\right) e^{-5 t}+\left(2+\frac{2 a}{3}+\frac{b}{3}\right) e^{t}-\frac{3 a+2 b}{5} \\
& y(t)=\left(2-\frac{2 b}{15}+\frac{2 a}{15}\right) e^{-5 t}+\left(2+\frac{2 a}{3}+\frac{b}{3}\right) e^{t}-\frac{4 a+b}{5}
\end{aligned}
$$

which is ripe for interpretation.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to zero? Recall: Determine whether there is going to be disarmament (x and y approach 0 as t increases), a stabilized arms race (x and y approach a constant as $t \rightarrow+\infty$), or a runaway arms race (x and y approach $+\infty$ as $t \rightarrow+\infty)$.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to zero?

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to zero?

 Answer: None. First note: since they are budgets, x and y must be non-negative. If both budgets converge to zero (or any finite number), then we must have$$
2+\frac{2 a}{3}+\frac{b}{3}=0
$$

In this case, the budgets would converge to $x_{\infty}=-\frac{3 a+2 b}{5}$ and $y_{\infty}=-\frac{4 a+b}{5}$. If both defense budgets go to zero, then the last two equations give that $a=b=0$, which contradicts the first equation.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive finite number?

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive finite number?
Answer: Certain ranges of trust. As mentioned, we must have

- $2+\frac{2 a}{3}+\frac{b}{3}=0$

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive finite number?
Answer: Certain ranges of trust. As mentioned, we must have

- $2+\frac{2 a}{3}+\frac{b}{3}=0$
- x and $y \geq 0$.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive finite number?
Answer: Certain ranges of trust. As mentioned, we must have

- $2+\frac{2 a}{3}+\frac{b}{3}=0$
- x and $y \geq 0$.
- $x_{\infty}=-\frac{3 a+2 b}{5}$ and $y_{\infty}=-\frac{4 a+b}{5}$.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive

 finite number?Answer: Certain ranges of trust. As mentioned, we must have

- $2+\frac{2 a}{3}+\frac{b}{3}=0$
- x and $y \geq 0$.
- $x_{\infty}=-\frac{3 a+2 b}{5}$ and $y_{\infty}=-\frac{4 a+b}{5}$.

We solve the first equation for a in terms of b and substitute into the formulas for the limits of x and y to yield:

$$
\begin{aligned}
& x_{\infty}=\frac{18-b}{10} \\
& y_{\infty}=\frac{b+12}{5}
\end{aligned}
$$

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to a positive finite number?

$$
\begin{aligned}
& x_{\infty}=\frac{18-b}{10} \\
& y_{\infty}=\frac{b+12}{5} .
\end{aligned}
$$

Since $x, y \geq 0$, we get ranges on the trust levels for which valid solutions can occur, namely, $b \in[-12,18]$ (and as a consequence, $a \in[-12,3]$).

Book's Assumptions: "Type" of Limits Must Agree

Phase Portraits Examples:

Book's Assumptions: "Type" of Limits Must Agree

Phase Portraits Examples:

Under what conditions could both defense budgets go to a positive finite number?
Given these ranges of a, b, we might ask at what trust levels is, say, x outspending y ? Note that at $a=b=-2$, we get that $x=y=2$. For $b>-2, y>x$. This corresponds to their trust levels, since if $b>-2$, then $a<-2$ (i.e., $b>a$).

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to infinity?

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to infinity? Answer: Lots and lots.
Here,

- x and $y \geq 0$

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to infinity? Answer: Lots and lots.
Here,

- x and $y \geq 0$ and $2+\frac{2 a}{3}+\frac{b}{3}>0$

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to infinity? Answer: Lots and lots.
Here,

- x and $y \geq 0$ and $2+\frac{2 a}{3}+\frac{b}{3}>0$

Solving as before, we see that for any a, b such that $a>-\frac{b}{2}-3$, the solutions will diverge.

Book's Assumptions: "Type" of Limits Must Agree

Under what conditions could both defense budgets go to infinity? Answer: Lots and lots.
Here,

- x and $y \geq 0$ and $2+\frac{2 a}{3}+\frac{b}{3}>0$

Solving as before, we see that for any a, b such that $a>-\frac{b}{2}-3$, the solutions will diverge.

How Valid Are Book's Assumptions?

Must both x and y have the same type of limit (finite vs. infinite)?

How Valid Are Book's Assumptions?

Must both x and y have the same type of limit (finite vs. infinite)? Answer: Yes. The decaying term goes to 0 as time increases, and the coefficient for the exponential term matches, which means they are either both staying finite in the long-run or both blowing up (pun intended).

Assumption 1: Same kind of limit

If both finite, must both x and y have positive limit or both have zero limit?

Assumption 1: Same kind of limit

If both finite, must both x and y have positive limit or both have zero limit?
Answer: No: at the endpoints of the finite solution sets found above, we find that this doesn't happen:

Assumption 1: Same kind of limit

If both finite, must both x and y have positive limit or both have zero limit?
Answer: No: at the endpoints of the finite solution sets found above, we find that this doesn't happen:
If $(a, b)=(-12,18)$, then $x_{\infty}=0$ and $y_{\infty}=6$.

Assumption 1: Same kind of limit

If both finite, must both x and y have positive limit or both have zero limit?
Answer: No: at the endpoints of the finite solution sets found above, we find that this doesn't happen:
If $(a, b)=(-12,18)$, then $x_{\infty}=0$ and $y_{\infty}=6$.
If $(a, b)=(3,-12)$, then $x_{\infty}=3$ and $y_{\infty}=0$.

Assumption 2: Meaning of trust

Why are any of the terms there?

$$
\begin{array}{ll}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

Assumption 2: Meaning of trust

Why are any of the terms there?

$$
\begin{array}{ll}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

- Same country: if the other country wasn't there, defense spending would decrease exponentially.

Assumption 2: Meaning of trust

Why are any of the terms there?

$$
\begin{array}{ll}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

- Same country: if the other country wasn't there, defense spending would decrease exponentially.
- Other country: higher defense spending in the other country means an increase in defense spending.

Assumption 2: Meaning of trust

Why are any of the terms there?

$$
\begin{array}{ll}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

- Same country: if the other country wasn't there, defense spending would decrease exponentially.
- Other country: higher defense spending in the other country means an increase in defense spending.
- Trust factor...several interpretations to explore, but:

Assumption 2: Meaning of trust

Why are any of the terms there?

$$
\begin{array}{lc}
\frac{d x}{d t}=2 y-x+a ; & x(0)=1 \\
\frac{d y}{d t}=4 x-3 y+b ; & y(0)=4
\end{array}
$$

- Same country: if the other country wasn't there, defense spending would decrease exponentially.
- Other country: higher defense spending in the other country means an increase in defense spending.
- Trust factor...several interpretations to explore, but: negative values of a and b mean that there's a decrease in defense spending, so negative values correspond to trust (and the higher $|a|$ is, the larger the decrease).

Richardson, Arms and Insecurity, (1960)

Assumption 2: Meaning of trust

What do a and b even mean?

- Same sign?

Assumption 2: Meaning of trust

What do a and b even mean?

- Same sign?
- "Unitize" trust?

What if a and b must be of the same sign?

We have the relationship that governs when convergence occurs, namely that $a=-\frac{b}{2}-3$. If we also require that either $a, b \geq 0$ or $a, b \leq 0$, then a little algebra shows that $b \in[-6,0]$ (and $a \in[-3,0]$).

What if a and b must be of the same sign?

We have the relationship that governs when convergence occurs, namely that $a=-\frac{b}{2}-3$. If we also require that either $a, b \geq 0$ or $a, b \leq 0$, then a little algebra shows that $b \in[-6,0]$ (and $a \in[-3,0]$).
We can also see this geometrically:

What if a and b must be of the same sign?

We have the relationship that governs when convergence occurs, namely that $a=-\frac{b}{2}-3$. If we also require that either $a, b \geq 0$ or $a, b \leq 0$, then a little algebra shows that $b \in[-6,0]$ (and $a \in[-3,0]$).
We can also see this geometrically:

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

So:

- mutual trust can breed stabilized defense budgets.

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

So:

- mutual trust can breed stabilized defense budgets.
- mutual trust can lead to an uncontrolled arms race

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

So:

- mutual trust can breed stabilized defense budgets.
- mutual trust can lead to an uncontrolled arms race (!!)

What if a and b must be of the same sign?

Geometrically, if we're only concerned with mutual types of trust, then our region of divergence becomes:

So:

- mutual trust can breed stabilized defense budgets.
- mutual trust can lead to an uncontrolled arms race (!!)
- any mutual distrust will lead to an uncontrolled arms race.

Scales of trust

How does the model react with "unitized" trust values? Two attempts:

Scales of trust

How does the model react with "unitized" trust values?
Two attempts:

- Percentage of trust $(a, b \in[0,1])$, with 0 being perfect trust.

Scales of trust

How does the model react with "unitized" trust values?
Two attempts:

- Percentage of trust $(a, b \in[0,1])$, with 0 being perfect trust.
- Signed percentage of trust $(a, b \in[-1,1])$, with 0 being neutrality, -1 being perfect trust, 1 being perfect distrust.

Percentage of trust $(a, b \in[0,1])$

Percentage of trust $(a, b \in[0,1])$

In this case, the situation simplifies quite quickly: convergence to a finite number is impossible, and both defense budgets must diverge, since if $b \in[0,1]$, then any $a \in[0,1]$ has the property that $a>-\frac{b}{2}-3$.

Percentage of trust $(a, b \in[0,1])$

In this case, the situation simplifies quite quickly: convergence to a finite number is impossible, and both defense budgets must diverge, since if $b \in[0,1]$, then any $a \in[0,1]$ has the property that $a>-\frac{b}{2}-3$. Implication: perfect trust still yields exploding defense budgets.

Signed percentage of trust $(a, b \in[-1,1])$

Signed percentage of trust $(a, b \in[-1,1])$

Attacking the problem geometrically, we see that in the square $[-1,1] \times[-1,1]$ in the ba-plane, there is an intersection only with the region of mutual divergence as well.

Signed percentage of trust $(a, b \in[-1,1])$

Attacking the problem geometrically, we see that in the square $[-1,1] \times[-1,1]$ in the ba-plane, there is an intersection only with the region of mutual divergence as well.

Implication: as before, nothing can prevent defense budget divergence.

When Arms Race, It's Hands Down a Tough Contest

Three Benefits

- Construction/meaning of parameters

When Arms Race, It's Hands Down a Tough Contest

Three Benefits

- Construction/meaning of parameters
- Analyzing solutions algebraically and geometrically

When Arms Race, It's Hands Down a Tough Contest

Three Benefits

- Construction/meaning of parameters
- Analyzing solutions algebraically and geometrically
- Practical consequences of long-term analysis

When Arms Race, It's Hands Down a Tough Contest

Further Exploration

- Although $a>-\frac{b}{2}-3$ yields an uncontrolled arms race, the behavior of the solution curves has the potential to violate the fact that x and y must be non-negative. What regions in the ba-plane yield solutions x, y that remain non-negative $\forall t \geq 0$?

When Arms Race, It's Hands Down a Tough Contest

Further Exploration

- Although $a>-\frac{b}{2}-3$ yields an uncontrolled arms race, the behavior of the solution curves has the potential to violate the fact that x and y must be non-negative. What regions in the ba-plane yield solutions x, y that remain non-negative $\forall t \geq 0$?
- What if a, b are functions of x, y ?

When Arms Race, It's Hands Down a Tough Contest

Further Exploration

- Although $a>-\frac{b}{2}-3$ yields an uncontrolled arms race, the behavior of the solution curves has the potential to violate the fact that x and y must be non-negative. What regions in the ba-plane yield solutions x, y that remain non-negative $\forall t \geq 0$?
- What if a, b are functions of x, y ?
- Vary the coefficients of x and y.

Any questions?

Thank you.

[^0]: Fundamentals of Differential Equations, 7/e. Nagle, Saff, Snider

