Two Musical Orderings

Messiaen 7

Marcus Pendergrass
Hampden-Sydney College
MD-DC-VA, Fall 2012
Virginia Military Institute
Partial Orders in Music Theory

• Submajorization and Voice Leading

• Set Inclusion and Pitch Class Sets
 ▸ Straus (2005)

• New Ideas
 ▸ External elements and harmony
 ▸ Stochastic dominance and timbre
Some Connections

- Submajorization and Voice Leading (Tymoczko)
- Orbifolds and Musical Geometry (Tymoczko)
- The Geometry and Topology of Three-Manifolds (Thurston, 1980)
- Geometrization Conjecture (Thurston, 1982)
- Perelman’s proof of the Poincare Conjecture (Perelman, 2003)
- Perelman refuses Fields Medal (2006) and Clay Millenium Prize (Perelman, 2010, 10^6)
Orderings

• A partial order on a set S is a relation \leq that is

 ▶ Reflexive: $a \leq a$ for all $a \in S$

 ▶ Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$

 ▶ Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$
Orderings

• A *partial order* on a set S is a relation \leq that is

 - Reflexive: $a \leq a$ for all $a \in S$

 - Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$

 - Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$
Orderings

• A partial order on a set S is a relation \leq that is

 ▶ Reflexive: $a \leq a$ for all $a \in S$

 ▶ Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$

 ▶ Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$
Orderings

- A *partial order* on a set S is a relation \leq that is

 - Reflexive: $a \leq a$ for all $a \in S$

 - Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$

 - Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$

![Diagram of a partial order with elements a, b, and S]
Orderings

- A *partial order* on a set S is a relation \leq that is
 - Reflexive: $a \leq a$ for all $a \in S$
 - Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$
 - Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$
Orderings

• A partial order on a set S is a relation \leq that is

 ‣ Reflexive: $a \leq a$ for all $a \in S$

 ‣ Transitive: $a \leq b$ and $b \leq c$ implies $a \leq c$ for all $a, b, c \in S$

 ‣ Antisymmetric: $a \leq b$ and $b \leq a$ implies $a = b$ for all $a, b \in S$

a, b incomparable
Set Inclusion Ordering

• Partial order induced by set inclusion.

• Music theory: scales and harmony
 ‣ C pentatonic: \{C, D, E, G, A\}
 ‣ C diatonic: \{C, D, E, F, G, A, B\}
 ‣ C pentatonic \subseteq C diatonic

• Theme: partial order models some notion of size or precedence among musical objects
Partial Order modulo Group

• Often we want to identify certain musical objects as being essentially “the same”:

 ▶ All diatonic scales are “the same”: C major ≡ G major ≡ ...

 ▶ “transpositional equivalence”

 ▶ All notes separated by whole octaves are “the same”: middle A ≡ high A ≡ ...

 ▶ “octave equivalence”
Example: Pitch Class Space

- \(S = \mathbb{Z} \) = “infinite keyboard”
Example: Pitch Class Space

- \(S = \mathbb{Z} \) = “infinite keyboard”
Example: Pitch Class Space

- $S = \mathbb{Z} = \text{“infinite keyboard”}$
Example: Pitch Class Space

- \(S = \mathbb{Z} = \text{“infinite keyboard”} \)
- \(G = < z + 12 > = \text{“octave equivalence”} \)
Example: Pitch Class Space

- $S = \mathbb{Z} =$ “infinite keyboard”
- $G = \langle z + 12 \rangle =$ “octave equivalence”
Example: Pitch Class Space

- \(S = \mathbb{Z} = \text{“infinite keyboard”} \)
- \(G = \langle z + 12 \rangle = \text{“octave equivalence”} \)
Example: Pitch Class Space

- $S = \mathbb{Z} = \text{“infinite keyboard”}$
- $G = \langle z + 12 \rangle = \text{“octave equivalence”}$
Example: Pitch Class Space

- \(S = \mathbb{Z} = \text{“infinite keyboard”} \)
- \(G = \langle z + 12 \rangle = \text{“octave equivalence”} \)
Example: Pitch Class Space

- $S = \mathbb{Z} = \text{“infinite keyboard”}$
- $G = < z + 12 > = \text{“octave equivalence”}$
- $S / G = \mathbb{Z}_{12} = \text{“pitch class space”}$
Example: Pitch Class Space

- $S = \mathbb{Z} =$ “infinite keyboard”
- $G = \langle z + 12 \rangle =$ “octave equivalence”
- $S / G = \mathbb{Z}_{12} =$ “pitch class space”
Example: Pitch Class Space

- \(S = \mathbb{Z} = \text{“infinite keyboard”} \)
- \(G = \langle z + 12 \rangle = \text{“octave equivalence”} \)
- \(S / G = \mathbb{Z}_{12} = \text{“pitch class space”} \)
Example: Pitch Class Space

- $S = \mathbb{Z} = “\text{infinite keyboard}”$
- $G = <z + 12> = “\text{octave equivalence}”$
- $S / G = \mathbb{Z}_{12} = “\text{pitch class space}”$
Example: Pitch Class Space

- $S = \mathbb{Z} = \text{“infinite keyboard”}$
- $G = < z + 12 > = \text{“octave equivalence”}$
- $S / G = \mathbb{Z}_{12} = \text{“pitch class space”}$
Partial Order modulo Group

• We may also want to model some notion of musical “motion” or “transformation”:
 ▶ Transpose all notes up one octave.
 ▶ Move from the tonic to the dominant.
Partial Order modulo Group

• A group G acting on S can serve both purposes:

 ▸ Equivalence: $a, b \in S$ are “the same” if $b = Ta$ for some $T \in G$.

 ▸ Motion: can “move” from a to b if $b = Ta$ for some $T \in G$.
Partial Order modulo Group

• A group G acting on S can serve both purposes:

 ▶ Equivalence: $a, b \in S$ are “the same” if $b = Ta$ for some $T \in G$.

 ▶ Motion: can “move” from a to b if $b = Ta$ for some $T \in G$

How do the group and the partial order interact?
Partial Order modulo Group

- Equivalence classes

 - $A = [a] = \text{set of all } b \in S \text{ that are essentially “the same” as } a.$

 $$= \{ b \in S : b = Ta \text{ for some } T \in G \}$$

 - $S / G = \text{set of all distinct equivalence classes}.$
Partial Order modulo Group

• Equivalence classes
 \[A = [a] = \text{set of all } b \in S \text{ that are essentially “the same” as } a. \]
 \[= \{ b \in S : b = Ta \text{ for some } T \in G \} \]
 \[S / G = \text{set of all distinct equivalence classes.} \]

• Induced relation on \(S / G \)
 \[A \leq B \text{ if and only for all } x \in A \text{ there exists } y \in B \text{ such that } x \leq y \]
Partial Order modulo Group

Theorem 1

If G acts *transversely* on S, then the induced relation is a partial order on S / G.

G acts transversely on S.

Theorem 1

If G acts transversely on S, then the induced relation is a partial order on S / G.

- G acts transversely on S if, for all $T \in G$ and all $a \in S$, either Ta and a are incomparable, or they are identical.
Theorem 1

If G acts transversely on S, then the induced relation is a partial order on S/G.

- G acts transversely on S if, for all $T \in G$ and all $a \in S$, either Ta and a are incomparable, or they are identical.
Partial Order modulo Group

Theorem 1

If G acts transversely on S, then the induced relation is a partial order on S/G.

- G acts transversely on S if, for all $T \in G$ and all $a \in S$, either Ta and a are incomparable, or they are identical.

\[a \quad Ta \quad a = Ta \]
Partial Order modulo Group

Theorem 1

If G acts transversely on S, then the induced relation is a partial order on S / G.

- G acts transversely on S if, for all $T \in G$ and all $a \in S$, either Ta and a are incomparable, or they are identical.
A Partial Order on Scales

- *Dense Scale*: a scale consisting solely of steps of size 1 or 2.
A Partial Order on Scales

- Dense Scale: a scale consisting solely of steps of size 1 or 2.

\[(2, 2, 1, 2, 2, 2, 1)\]
A Partial Order on Scales

- **Dense Scale**: a scale consisting solely of steps of size 1 or 2.
A Partial Order on Scales

- **Dense Scale**: a scale consisting solely of steps of size 1 or 2.

Diatonic: \((2, 2, 1, 2, 2, 2, 1)\)

Melodic Minor: \((2, 1, 2, 2, 2, 2, 1)\)

Octatonic: \((1, 2, 1, 2, 1, 2, 1, 2)\)
A Partial Order on Scales

- Equivalences
 - Octave equivalence
 - Transpositions (translations) of a scale are all “the same”
 - C major \equiv G major \equiv D major \equiv ...
 - Modes (rotations) of a scale are all “the same”
 - (2,2,1,2,2,2,1) \equiv (2,1,2,2,2,1,2) \equiv (1,2,2,2,1,2,2) \equiv ...
A Partial Order on Scales

- $S = \{\text{all dense scales}\}, \quad \leq = \text{set inclusion}$
A Partial Order on Scales

- $S = \{\text{all dense scales}\}$, $\leq = \text{set inclusion}$

- $G = \langle \text{octave equivalence, transpositions, rotations} \rangle$
A Partial Order on Scales

- $S = \{\text{all dense scales}\}$, \(\leq\) = set inclusion
- $G = \langle \text{octave equivalence, transpositions, rotations} \rangle$

✓ G acts transversely on S
A Partial Order on Scales

- $S = \{\text{all dense scales}\}$, \leq = set inclusion
- $G = \langle \text{octave equivalence, transpositions, rotations} \rangle$

G acts transversely on S

S / G is a partial order
A Partial Order on Scales

- S/G contains 31 distinct scales.

- S/G has four *minimal elements*:
 - whole tone scale
 - diatonic scale
 - melodic minor scale
 - octatonic scale
A Partial Order on Scales

• Partial order from the whole tone scale
A Partial Order on Scales

- Partial order from the diatonic scale
A Partial Order on Scales

- Partial order from the melodic minor scale

Diagram:

- Melodic minor
- Minor blues (2)
- Messiaen 7
- Chromatic
A Partial Order on Scales

• Partial order from the octatonic scale
A Partial Order on Scales

- Generalization: \(\text{Dense}(k) \text{Scale} \): a scale consisting solely of steps of size 1, or 2, or ... or \(k \).

- \(\text{Dense}(3) \): \((2, 2, 3, 2, 3)\)
- \(\text{Dense}(4) \): \((3, 4, 3, 2)\)
- \(\text{Dense}(5) \): \((4, 3, 5)\)

\[\begin{array}{c}
\text{pentatonic} \\
(2, 2, 3, 2, 3) \\
\text{Dense}(3)
\end{array} \quad \begin{array}{c}
\text{minor seventh chord} \\
(3, 4, 3, 2) \\
\text{Dense}(4)
\end{array} \quad \begin{array}{c}
\text{major triad} \\
(4, 3, 5) \\
\text{Dense}(5)
\end{array} \]
Theorem 2

A scale in Dense(k) mod G is minimal if and only if every scalar third spans at least $k+1$ semitones.
Theorem 2

A scale in Dense(k) mod G is minimal if and only if every scalar third spans at least $k + 1$ semitones.

- A *scalar third* is the sum of two consecutive steps in a scale.
 - $(2,2,1,2,2,2,1)$ in Dense(2) mod G has scalar thirds $(4,3,3,4,4,3,3)$.
Theorem 2

A scale in Dense(k) mod G is minimal if and only if every scalar third spans at least $k + 1$ semitones.

- A **scalar third** is the sum of two consecutive steps in a scale.
 - (2,2,1,2,2,2,1) in Dense(2) mod G has scalar thirds (4,3,3,4,4,3,3).
- Theorem 2 is true in N-tone equal temperament.
A Partial Order on Scales

- Dense(3) has seven minimal elements:
 - (1,3,1,3,1,3), a symmetric scale (R. Daly, “Pulp Fiction”)
 - (2,2,2,2,2,2), the whole tone scale
 - (2,2,3,2,3), the pentatonic scale
 - (2,2,3,3,2), the dominant ninth chord
 - (3,1,3,2,3), a blues scale
 - (3,1,3,3,2), the dominant seventh + sharp ninth chord (J. Hendrix, “Foxy Lady”)
 - (3,3,3,3), the fully diminished chord
A Partial Order on Scales

- Dense(4) has an additional six minimal elements:
 - (3,3,4,2), the minor seventh, flat fifth chord
 - (3,4,3,2), the minor seventh chord
 - (4,2,4,2), the dominant seventh, flat fifth chord
 - (4,3,3,2), the dominant seventh chord
 - (4,3,4,1), the major seventh chord
 - (4,4,4), the augmented triad
A Partial Order on Scales

- Dense(5) has an additional four minimal elements:
 - (3,4,5), the minor triad
 - (4,3,5), the major triad
 - (5,1,5,1), a symmetric chord
 - (5,5,2), the quartal triad (H. Hancock, “Maiden Voyage”)
A Timbral Partial Order

• Timbre is the “characteristic sound” of a musical voice.
 ▸ many aspects; notoriously difficult to quantify

• But musicians commonly speak about timbre in comparative ways
 ▸ “a trumpet is brighter than a french horn”
 ▸ “he sings like Bob Dylan with a head cold”

• Can we model these judgements using a partial order?
A Timbral Partial Order

- Discrete power spectrum model for “steady-state timbre”.

\[a_k = \text{power at } k^{\text{th}} \text{ harmonic} \]
A Timbral Partial Order

- Discrete power spectrum model for "steady-state timbre".

\[\sum a_k = 1 \text{ (unit volume)} \]
A Timbral Partial Order

- Discrete power spectrum model for “steady-state timbre”.

\[a = (a_1, a_2, \ldots, a_n) = \text{timbral vector} \]
A Timbral Partial Order

• Discrete power spectrum model for “steady-state timbre”.

\[S = \{ \text{all timbral vectors} \} = \{ \text{all probability vectors} \} \]
A Timbral Partial Order

• “Brightness” aspect of timbre
 ▸ refers to a prevalence of high harmonics in the sound

• The “Brightness” partial order
 ▸ Timbral vector b is “brighter than” timbral vector a if

$$\sum_{j \geq k} a_j \leq \sum_{j \geq k} b_j \quad \forall k$$

 ▸ i.e. every high-pass filter returns more power from b than from a
A Timbral Partial Order

Six Instruments in the “Brightness” Order
Sound Design Problem

• Among all instruments which are no brighter than a trumpet, which has the timbre that is closest to an oboe?

• How do we measure “closeness”?

• Total Variational Distance

\[d_{TV}(x, y) = \left\{ \sum_{i \in I} |x_i - y_i| : I \subseteq 1, 2, \ldots, n \right\} \]

▷ maximum power differential across subsets of harmonics
Sound Design Problem

- Constrained Optimization Problem

Minimize: $d_{TV}(x, \text{ oboe})$
Subject to: $x \leq \text{ trumpet in the “brightness” order}$
Sound Design Problem

- Constrained Optimization Problem

Minimize: $\|x - \text{oboe}\|_1$
Subject to: $Hx \leq H(\text{trumpet})$ component-wise
Sound Design Problem

- Constrained Optimization Problem

Minimize: $\| x - \text{oboe} \|_1$

Subject to: $H x \leq H(\text{trumpet})$ component-wise

- efficiently solvable via linear programming
Sound Design Problem

Minimize: $\|x - oboe\|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise
Sound Design Problem

Minimize: $\|x - oboe\|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise
Sound Design Problem

Minimize: $\|x - \text{oBoe}\|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise

Solution to Sound Design Problem
Sound Design Problem

Minimize: $\|x - \text{ooboe}\|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise
Sound Design Problem

Minimize: $\|x - \text{ooboe}\|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise

Solution to Sound Design Problem
Sound Design Problem

Minimize: $\| x - oboe \|_1$

Subject to: $Hx \leq H(\text{trumpet})$ component-wise

Solution to Sound Design Problem

Thanks!
Some References

• D. Tymoczko, *The geometry of musical chords*, Science 313, 2006, pp. 72 - 74; available at http://dx.doi.org/10.1126/science.1126287

