The symmetries of $(7, 3, 1)$

Ezra Brown
Virginia Tech

MD/DC/VA Fall Section Meeting
Virginia Military Institute
October 27, 2012
What To Expect

The (7, 3, 1) design

Symmetries of a design

The Orbit-Stabilizer Theorem

The number of symmetries of (7, 3, 1)

A surprise ending
The (7, 3, 1) block design

The (7, 3, 1) block design is:

- a set V of 7 items (or varieties) and a collection of 7 subsets of V called blocks, such that
- each block contains three varieties,
- each variety is in three blocks, and
- each pair of varieties is in exactly one block together.

\[
B_1 = \{1, 2, 4\} \\
B_2 = \{2, 3, 5\} \\
B_3 = \{3, 4, 6\} \\
B_4 = \{4, 5, 7\} \\
B_5 = \{5, 6, 1\} \\
B_6 = \{6, 7, 2\} \\
B_7 = \{7, 1, 3\}
\]
A permutation of a set S is a mapping of S to itself that is one-to-one and onto.

The permutation $\rho : 1 \rightarrow 2 \rightarrow 4 \rightarrow 1, 3 \rightarrow 6 \rightarrow 5 \rightarrow 3, 7 \rightarrow 7$ of the set $\{1, 2, 3, 4, 5, 6, 7\}$ can also be written as $\rho = (1, 2, 4)(3, 6, 5)(7)$.
A symmetry of a design is a permutation of its varieties that also permutes its blocks.

The permutation \(\rho = (1, 2, 4)(3, 6, 5)(7) \) determines (or induces) the permutation \(\rho^* : (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6) \) on the blocks of \((7, 3, 1)\). Thus, \(\rho \) is a symmetry of \((7, 3, 1)\).

The symmetries of a design \(\mathcal{D} \) form a group under composition of mappings — the symmetry group \(\text{Sym}(\mathcal{D}) \).
Let G be a group of permutations of a set S, let $T \subseteq S$ and let $x \in S$.

- $\text{Orb}_G(x) = \{y \in S : y = g(x) \text{ for some } g \in G\}$ is called the orbit of x under G. Similarly, $\text{Orb}_G(T) = \{R \subseteq S : R = g(T) \text{ for some } g \in G\}$ is called the orbit of T under G.

- $\text{Stab}_G(T) = \{g \in G : g(T) = T\}$ is called the stabilizer of T in G; we denote $\text{Stab}_G(\{x\})$ by $\text{Stab}_G(x)$. If $\alpha \in \text{Stab}_G(T)$, we say that α stabilizes or fixes T.

\[\text{Stab}_G(T) = \{g \in G : g(T) = T\} \] is called the stabilizer of T in G; we denote $\text{Stab}_G(\{x\})$ by $\text{Stab}_G(x)$. If $\alpha \in \text{Stab}_G(T)$, we say that α stabilizes or fixes T.

Brown The symmetries of $(7, 3, 1)$
The Orbit-Stabilizer Theorem

Theorem: Let G be a finite group of permutations on a finite set S, let $T \subseteq S$, and let $|X|$ denote the cardinality (or order) of X. Then $\text{Stab}_G(T)$ is a subgroup of G, and the cardinalities of G, $\text{Stab}_G(T)$, and $\text{Orb}_G(T)$ are related by the equation

$$|G| = |\text{Orb}_G(T)| \cdot |\text{Stab}_G(T)|.$$
Let \mathcal{D} denote the $(7, 3, 1)$ design. We define the following groups:

- $G = \text{Sym}(\mathcal{D})$ – the symmetry group of \mathcal{D}
- $H = \text{Stab}_G(B_1)$ – the symmetries that fix B_1
- $K = \text{Stab}_H(1)$ – the symmetries that fix B_1 and 1
- $L = \text{Stab}_K(2)$ – the symmetries that fix B_1 and 1 and 2

By three applications of the Orbit-Stabilizer Theorem,

$$|G| = |\text{Orb}_G(B_1)| \cdot |\text{Orb}_H(1)| \cdot |\text{Orb}_K(2)| \cdot |L|.$$
Define τ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\tau = (1, 2, 3, 4, 5, 6, 7)$. **Fact:** $\tau \in G$.

Here’s how the induced map τ^* acts on the blocks of $(7, 3, 1)$:

\[
\begin{align*}
\tau(B_1) &= \tau(\{1, 2, 4\}) = \{2, 3, 5\} = B_2 \\
\tau(B_2) &= \tau(\{2, 3, 5\}) = \{3, 4, 6\} = B_3 \\
\tau(B_3) &= \tau(\{3, 4, 6\}) = \{4, 5, 7\} = B_4 \\
\tau(B_4) &= \tau(\{4, 5, 7\}) = \{5, 6, 1\} = B_5 \\
\tau(B_5) &= \tau(\{5, 6, 1\}) = \{6, 7, 2\} = B_6 \\
\tau(B_6) &= \tau(\{6, 7, 2\}) = \{7, 1, 3\} = B_7 \\
\tau(B_7) &= \tau(\{7, 1, 3\}) = \{1, 2, 4\} = B_1
\end{align*}
\]

Thus, $\tau^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7)$, so $|\text{Orb}_G(B_1)| = 7$.

The symmetries of $(7, 3, 1)$
\[\tau^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7) \]

\[\tau = (1, 2, 3, 4, 5, 6, 7) \] cyclically permutes 1, 2, 3, 4, 5, 6 and 7.

Brown

The symmetries of (7, 3, 1)
Define ρ on \{1, 2, 3, 4, 5, 6, 7\} by $\rho = (1, 2, 4)(3, 6, 5)(7)$. **Fact:** ρ fixes B_1, so $\rho \in H = Stab_G(B_1)$.

Here’s how the induced map ρ^* acts on the blocks of (7, 3, 1):

\[
\begin{align*}
\rho(B_1) &= \rho(\{1, 2, 4\}) = \{2, 4, 1\} = B_1 \\
\rho(B_2) &= \rho(\{2, 3, 5\}) = \{4, 6, 3\} = B_3 \\
\rho(B_3) &= \rho(\{3, 4, 6\}) = \{6, 1, 5\} = B_5 \\
\rho(B_4) &= \rho(\{4, 5, 7\}) = \{1, 3, 7\} = B_7 \\
\rho(B_5) &= \rho(\{5, 6, 1\}) = \{3, 5, 2\} = B_2 \\
\rho(B_6) &= \rho(\{6, 7, 2\}) = \{5, 7, 4\} = B_4 \\
\rho(B_7) &= \rho(\{7, 1, 3\}) = \{7, 2, 6\} = B_6
\end{align*}
\]

Thus, $\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6)$; as ρ cyclically permutes 1, 2 and 4, we see that $|Orb_H(1)| = 3$.
$\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6)$

$\rho = (1, 2, 4)(3, 6, 5)(7)$ rotates \{1, 2, 4\}, rotates \{3, 6, 5\}, fixes 7.
The symmetry σ

Define σ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\sigma = (1)(2, 4)(3, 5, 7, 6)$. **Fact:** σ fixes both B_1 and 1, so $\sigma \in K = Stab_H(1)$.

Here’s how the induced map σ^* acts on the blocks of $(7, 3, 1)$:

\[
\begin{align*}
\sigma(B_1) &= \sigma(\{1, 2, 4\}) = \{1, 4, 2\} = B_1 \\
\sigma(B_2) &= \sigma(\{2, 3, 5\}) = \{4, 5, 7\} = B_4 \\
\sigma(B_3) &= \sigma(\{3, 4, 6\}) = \{5, 2, 3\} = B_2 \\
\sigma(B_4) &= \sigma(\{4, 5, 7\}) = \{2, 7, 6\} = B_6 \\
\sigma(B_5) &= \sigma(\{5, 6, 1\}) = \{7, 3, 1\} = B_7 \\
\sigma(B_6) &= \sigma(\{6, 7, 2\}) = \{3, 6, 4\} = B_3 \\
\sigma(B_7) &= \sigma(\{7, 1, 3\}) = \{6, 1, 5\} = B_5
\end{align*}
\]

Thus, $\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7)$. As σ switches 2 and 4, we see that $|Orb_K(2) = 2|$.

Brown The symmetries of $(7, 3, 1)$
\[\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7) \]

\[\sigma = (1)(2, 4)(3, 5, 7, 6) \text{ fixes 1, swaps 2 and 4, rotates } \{3, 5, 7, 6\}. \]
The symmetry δ

Define δ on $\{1, 2, 3, 4, 5, 6, 7\}$ by $\delta = (1)(2)(4)(3, 5)(6, 7)$. **Fact:**

$L = \{\text{identity}, \delta, \sigma^2, \delta \sigma^2\}$ – thus, $|\text{Stab}_K(2)| = |L| = 4$.

Here’s how the induced map δ^* acts on the blocks of $(7, 3, 1)$:

\[
\begin{align*}
\delta(B_1) &= \delta(\{1, 2, 4\}) = \{1, 2, 4\} = B_1 \\
\delta(B_2) &= \delta(\{2, 3, 5\}) = \{2, 5, 3\} = B_2 \\
\delta(B_3) &= \delta(\{3, 4, 6\}) = \{5, 4, 7\} = B_4 \\
\delta(B_4) &= \delta(\{4, 5, 7\}) = \{4, 3, 6\} = B_3 \\
\delta(B_5) &= \delta(\{5, 6, 1\}) = \{3, 7, 1\} = B_7 \\
\delta(B_6) &= \delta(\{6, 7, 2\}) = \{7, 6, 2\} = B_6 \\
\delta(B_7) &= \delta(\{7, 1, 3\}) = \{6, 1, 5\} = B_5
\end{align*}
\]

Thus, $\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6)$.
\[\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6) \]

\[\delta = (1)(2)(4)(3, 5)(7, 6) \] fixes 1, 2 and 4, swaps 3 and 5, swaps 7 and 6.
Determining orbits and stabilizers

- \(\tau^* = (B_1, B_2, B_3, B_4, B_5, B_6, B_7) \in G \), so \(|\text{Orb}_G(B_1)| = 7 \).

- \(\rho^* = (B_1)(B_2, B_3, B_5)(B_4, B_7, B_6) \in H = \text{Stab}_G(B_1) \), and \(\rho = (1, 2, 4)(3, 6, 5)(7) \), so \(|\text{Orb}_H(1)| = 3 \).

- \(\sigma = (1)(2, 4)(3, 5, 7, 6) \) fixes 1 and swaps 2 and 4, so \(\sigma^* = (B_1)(B_2, B_4, B_6, B_3)(B_5, B_7) \in K = \text{Stab}_H(1) \), and \(|\text{Orb}_K(2)| = 2 \).

- \(\delta = (1)(2)(4)(3, 5)(7, 6) \) fixes 1, 2 and 4, so \(\delta^* = (B_1)(B_2)(B_3, B_4)(B_5, B_7)(B_6) \in L = \text{Stab}_K(2) \). In fact, \(L = \{id, \delta^*, \sigma^* \delta^*, \delta^* \sigma^* \delta^* \} \) and \(|L| = 4 \).
Let’s “do the math”

The Orbit-Stabilizer Theorem tells us that for \(G = \text{Sym}(D) \),

\[
|G| = |\text{Orb}_G| \cdot |\text{Orb}_H(1)| \cdot |\text{Orb}_K(2)| \cdot |\text{Stab}_K(2)|
= 7 \cdot 3 \cdot 2 \cdot 4
= 168.
\]

Hence, there are 168 symmetries of \((7, 3, 1)\).
Facts about $\text{Sym}((7,3,1))$

- $\text{Sym}((7,3,1))$ is generated by $\tau = (1,2,3,4,5,6,7)$ and $\sigma = (1)(2,4)(3,5,7,6)$.

- $\text{Sym}((7,3,1))$ is commonly known as $\text{GL}(3,2)$, the 3×3 matrices with entries in \mathbb{Z} mod 2.

- Another name for $\text{GL}(3,2)$ is $\text{PSL}(2,7)$, the 2×2 matrices with entries in \mathbb{Z} mod 7 and determinant 1, with I and $-I$ identified.

- $\text{Sym}((7,3,1))$ is simple: it has no nontrivial normal subgroups.

- ... and ...
The Surprise Ending

Brown

The symmetries of (7, 3, 1)
Sym((7,3,1)) contains within its subgroup structure a copy of the (7, 3, 1) design.
THANK YOU!