by

George Bridgman Wartburg College, Waverly, Iowa

One version of the Fundamental Theorem of Calculus is: Theorem: If f is Riemann integrable on I = a, b , if $F(x) = \int_{-x}^{x} f(t) dt$, and if f is continuous at the point $x_0 \in (a, b)$, then the derivative $F'(x_0)$ exists and equals $f(x_0)$.

We investigate the differentiability of the integral F at a point xo where the integrand f is not continuous.

Our results are as follows:

(I.) If f has a removable discontinuity at xo, i.e., lim $f(x) \neq f(x_0)$, then $F'(x_0)$ exists and equals lim f(x). $x \longrightarrow x_0$ (Simply "redefine" f at x_0 as $f(x_0) = 1$ im f(x) and apply the $x \longrightarrow x_0$ Theorem

(II.) If f has a jump discontinuity at x, i.e., lim $f(x) \neq lim f(x)$, then $F'(x_0)$ does not exist. However,

F does have left- and right-hand derivatives at x_0 , with $F'(x_0) = 1$ i m f(x) $x \rightarrow x_0$ and $F_{+}^{*}(x_{0}) = \lim_{x \to x_{0}^{+}} f(x)$. (The proof of this result is a

one-sided modification of the proof of the Theorem found in standard texts.)

(III.) If f has an essential discontinuity (neither "removable" nor "jump") at x_0 , then we cannot tell whether or not $F'(x_0)$ exists.

Example A: $f(x) = \sin \frac{1}{x}$, $x \neq 0$, f(0) = 0.

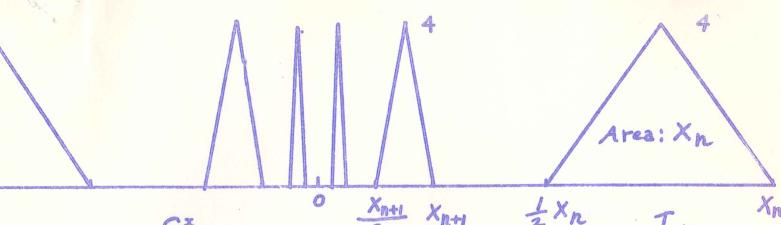
 $F(x) = \int_{-1}^{x} f(t) dt. \quad \text{Here } F'(0) = 0.$

Example B: $f(x) = 1 + \sin \frac{1}{x}$, x > 0; $f(x) = -1 + \sin \frac{1}{x}$, x < 0; f(0) = 0. Here F'(0) does not exist, but F'(0) = -1 and F'(0) = 1.

Example C: In this example, neither the right-hand nor the left-hand derivative of F exists at 0.

Let $x_n = 4^{-n}$, for n = 0, 1, 2, ..., and define f on the interval $I_n = \begin{bmatrix} \frac{1}{2}x_n, x_n \end{bmatrix}$ so that the graph of f forms an isosceles triangle of height 4 (and area $x_n = 4^{-n}$).

Define f = 0 elsewhere on [0, 1] and define f on [-1, 0] so that its graph is symmetric with respect to the y-axis. (See diagram.)



Let $F(x) = \int_{-1}^{x} f(t) dt$, $I_{n+1} \times I_{n+1} \times I$

Proof of Example A: Let $F(x) = \int_{-1}^{x} \sin \frac{1}{t} dt$. We prove that:

(1) F'(0) = 0.

The proof that F'(0) = 0 is similar. Thus the derivative F'(0) exists and equals 0.

By definition, $F_{+}^{!}(0) = \lim_{h \to 0+} \frac{F(h) - F(0)}{h} = \lim_{h \to 0+} \frac{1}{h} \int_{0}^{h} \sin \frac{1}{t} dt$.

Changing the variable of integration, $w = \frac{1}{t}$, we have:

(2) $A_h = \frac{1}{h} \int_0^h \sin \frac{1}{t} dt = \frac{1}{h} \int_{\frac{1}{h}}^{\infty} \frac{\sin w}{dw} dw$.

If we divide the interval $\left[\frac{1}{h}, \infty\right)$ into subintervals $\left[\frac{k}{h}, (k+1)\right]$ we may represent the last integral in (2) as an alternating series.

Because $\frac{1}{w^2}$ is a decreasing function of w, while sin w is periodic, this alternating series converges. In fact it converges absolutely.

We may show that

(3) $A_h \leq 2/7 h$,

making $\lim_{h \to 0+} A_h = 0$ and proving (1).