SOLUTIONS IOWA 2005

PROBLEM 1: How big is that angle?

It is 100°. From triangle $B C D$ we see that angle $B D C$ is 40°, and thus angle $D B A$ is likewise 40°. But triangle $A B D$ is isosceles, with angle $D A B$ equal to angle $D B A$, which is 40°. Thus the angle $A D B$ is 100°.

PROBLEM 2: From APs to squares.

(a) We may write the sum as the sum of two arithmetic progressions:

$$
1+2+3+\cdots+2005=\frac{2005 \cdot 2006}{2}
$$

and

$$
1+2+3+\cdots+2004=\frac{2004 \cdot 2005}{2}
$$

Then the sum of the two is

$$
\frac{2005(2004+2006)}{2}=2005^{2} .
$$

(b) In general,

$$
\begin{aligned}
{[1+2+3+\cdots+(n} & -1)+n]+[(n-1)+\cdots+3+2+1] \\
& =\frac{n(n+1)}{2}+\frac{(n-1) n}{2} \\
& =\frac{n^{2}+n+n^{2}-n}{2} \\
& =n^{2} .
\end{aligned}
$$

ALTERNATE SOLUTION

It is not necessary to have remembered a formula for the sum of an arithmetic progression.
One may write the sum in (b)

$$
\begin{array}{rrrr}
1+2+3+\cdots+(n-1) & +n \\
+(n-1)+(n-2)+(n-3) & +\cdots+1 & \\
=n+n+n & +\cdots+n & +n \\
& & =(n-1) n & +n \\
& & n^{2} . &
\end{array}
$$

PROBLEM 3: Mystery function.

The answers are: (a) $f^{(10)}(2)=4$, and (b) $f(3)=4 e-1$.
(a) From $f^{\prime}(x)=1+f(x)$ we get $f^{\prime \prime}(x)=f^{\prime}(x)$, and by an easy induction, $f^{(n)}(x)=f^{\prime}(x)$ for all $n \geq 1$. Thus $f^{(10)}(x)=f^{\prime}(x)=1+f(x)$, and $f^{(10)}(2)=1+f(2)=4$.
(b) From $f^{\prime}(x)=1+f(x)$ we have $\frac{d y}{1+y}=d x$, so $\ln (1+y)=x+C$ for some constant C.

Since $y=3$ when $x=2$ we have $C=\ln 4-2$, and

$$
x-2=\ln (1+y)-\ln 4=\ln \frac{1+y}{4} .
$$

Putting $x=3$ gives us $\ln \frac{1+y}{4}=1, \frac{1+y}{4}=e$, and $y=4 e-1$.

PROBLEM 4: Find a winning strategy.

Player 2 has a winning strategy. Note that the player who moves to square 1999 wins, and the one who moves to 1993 can move next to 1999. In general the positions from which a win can be assured are numbers which, like 2005, are of the form $6 n+1$. When Player 1 advances the piece k squares from position $6 n+1$ (and this includes position 1), Player 2 moves it $6-k$ squares to $6 n+6=6(n+1)+1$. (Note that if the final number were of the form $6 n+r$ with $r=2,3,4$ or 5 , the first player could win by moving to square r, or if $r=0$, to square 6.)

PROBLEM 5: Greatest common divisor.

The answer is $M=48$. Since $f(1)=-48$, it is clear that M must be a divisor of 48 . Using the factorization $u^{n}-1=(u-1)\left(u^{n-1}+u^{n-2}+\cdots+u+1\right)$ we may write

$$
\begin{aligned}
f(n) & =25^{n}-1-72 n \\
& =24\left(25^{n-1}+25^{n-2}+\cdots+25+1\right)-24(3 n) .
\end{aligned}
$$

Whether n is even or odd, this is an even multiple of 24 , so is divisible by 48 . Thus, $M=48$ is the largest common divisor of all the values of $f(n)$.

ALTERNATE SOLUTION

As above we see from $f(1)$ that M must be a divisor of 48. Now examine $f(n)=25^{n}-72 n-1$ modulo 3 and modulo 16 separately: Modulo $3, f(n) \equiv 1^{n}-0-1=0$, and modulo $16,25 \equiv 9$ and $25^{2} \equiv 9^{2} \equiv 1$, while $72 \equiv 8$. Thus, for even $n=2 m, f(2 m) \equiv 1^{m}-8(2 m)-1=1-0-1=$ 0 , and for odd $n=2 m+1, f(2 m+1) \equiv 25^{2 m} 25 \equiv 1^{2 m}(9)-8(2 m+1)-1 \equiv 9-8-1=0$. Hence $f(n)$ is a multiple of $3 \cdot 16=48$ for all n, and therefore $M=48$.

PROBLEM 6: Rational solutions.

It suffices to show that there are infinitely many rational pairs (x, y) with $y^{2}-x^{2}=a$ and $y>0$. Thus we want $a=(y-x)(y+x)$. Let b be any nonzero rational number. We will find rational x and y such that $y-x=b$ and $y+x=a / b$. Indeed, the solution of this pair of equations is $x=\left(a-b^{2}\right) / 2 b, y=\left(a+b^{2}\right) / 2 b$, and both x and y are rational. Moveover, different values of b yield different values of $y-x$, and therefore different pairs (x, y). It remains only to insure that $y>0$. For this it suffices that $b>0$ and $b^{2}>-a$, and it is clear that there are infinitely many rational values of b satisfying these conditions.

PROBLEM 7: Fractional part equation.

They are $x=\frac{-3+\sqrt{9+12 n}}{6}$, where $n \in\{0,1,2,3,4,5\}$. A necessary condition is that $0 \leq x^{3}<1$, and therefore $0 \leq x<1$, because $0 \leq\{u\}<1$ for all real u. So we restrict attention to x with $0 \leq x<1$. Then

$$
\left\{(x+1)^{3}\right\}=\left\{x^{3}+3 x^{2}+3 x+1\right\}=x^{3} \Longleftrightarrow 3 x^{2}+3 x=n
$$

where n is an integer and $0 \leq x<1$. The nonnegative root of this quadratic is

$$
x=\frac{-3+\sqrt{9+12 n}}{6}
$$

and this is real and lies in the interval $[0,1)$ if and only if $0 \leq n \leq 5$.

PROBLEM 8: Limit of integrals.

For $x \leq t \leq 2 x$ we have

$$
0<\frac{1}{\sqrt{t^{3}+4}} \leq \frac{1}{\sqrt{x^{3}+4}}
$$

and therefore

$$
\begin{aligned}
0 & <\int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}} \\
& \leq \int_{x}^{2 x} \frac{d t}{\sqrt{x^{3}+4}} \\
& =\frac{1}{\sqrt{x^{3}+4}} \int_{x}^{2 x} d t \\
& =\frac{x}{\sqrt{x^{3}+4}} .
\end{aligned}
$$

But

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt{x^{3}+4}}=0
$$

so

$$
\lim _{x \rightarrow \infty} \int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}}=0
$$

PROBLEM 9: Find the sum of squares.

Think complex numbers! From the equation

$$
(a+b i)^{3}=\left(a^{3}-3 a b^{2}\right)+\left(3 a^{2} b-b^{3}\right) i=41-18 i
$$

we see that

$$
a^{2}+b^{2}=|a+b i|^{2}=|41-18 i|^{\frac{2}{3}}=(\sqrt{2005})^{\frac{2}{3}}=\sqrt[3]{2005} .
$$

PROBLEM 10: A special sum of squares.

One such solution is $x_{i}=1$ for $1 \leq i \leq 29, x_{30}=929, x_{31}=28769$. Here is one way to find solutions. One notices that the equation is satisfied if all $x_{i}=1$. Put all but two of the x_{i} equal to 1 , and see what we can do with the other two, which we call a and b. The condition is then

$$
\begin{equation*}
a^{2}+b^{2}+29=31 a b . \tag{1}
\end{equation*}
$$

For fixed b, the condition (1) is that a be a root of the quadratic equation

$$
\begin{equation*}
x^{2}-31 b x+\left(b^{2}+29\right)=0 . \tag{2}
\end{equation*}
$$

The sum of the roots of this quadratic is $31 b$. That a number pair (a, b) satisfies (1) means that $x=a$ satisfies (2), and therefore so does $x=31 b-a$. Thus, if the number pair (a, b) satisfies (1), then so does the number pair $\left(a^{\prime}, b\right)$, where $a^{\prime}=31 b-a$. Also, we may interchange the roles of a and b in this argument to conclude that if (a, b) satisfies (1), so does the pair $\left(a, b^{\prime}\right)$, with $b^{\prime}=31 a-b$. Thus from the solution $(1,1)$ we get another solution $(30,1)$, and from it, $(30,929)$, and again $(28769,929)$.

