Eleventh Annual
Iowa Collegiate Mathematics Competition
Iowa State University April 16, 2005

Problems by Jerry Heuer, Concordia College (heuer@cord.edu)

To receive full credit, all problems, unless otherwise stated, require complete justification.

PROBLEM 1. How big is that angle?

In the trapezoid at the right, the sides AB and CD are parallel, and the diagonal BD is equal in length to side AD. Given that angle CBD measures 30° and angle DCB measures 110°, find the measure of angle ADB.

PROBLEM 2. From APs to Squares.

(a) Show that the sum

$$1 + 2 + 3 + \cdots + 2004 + 2005 + 2004 + \cdots + 3 + 2 + 1$$

is the square of an integer.

(b) Generalize the result in (a), with proof.

PROBLEM 3. Mystery function.

Suppose that the function f satisfies $f'(x) = 1 + f(x)$ for all x. If $f(2) = 3$, find:

(a) $f^{(10)}(2)$ (where $f^{(10)}$ denotes the 10th derivative of f);
(b) $f(3)$.

Justify your answers.

PROBLEM 4. Find a winning strategy.

A game board consists of a linear path of 2005 squares, numbered from 1 to 2005. A game piece is initially on square 1, and two players alternately move it. On each move a player advances the piece by 1, 2, 3, 4 or 5 squares. Thus, the first player advances the piece to square 2, 3, 4, 5 or 6. The player who moves onto square 2005 wins. Describe a winning strategy for one of the players, and make clear that it wins.
PROBLEM 5. Greatest common divisor.

Let \(f(n) = 25n - 72n - 1 \). Determine, with proof, the largest integer \(M \) such that \(f(n) \) is divisible by \(M \) for every positive integer \(n \).

PROBLEM 6. Rational solutions.

Prove that for every rational number \(a \), the equation
\[
y = \sqrt{x^2 + a}
\]
has infinitely many solutions \((x, y)\) with \(x \) and \(y \) rational.

PROBLEM 7. Fractional part equation.

For real numbers \(u \), let \(\{u\} = u - \lfloor u \rfloor \) denote the fractional part of \(u \). Here \(\lfloor u \rfloor \) denotes, as usual, the greatest integer less than or equal to \(u \). For example, \(\{\pi\} = \pi - 3 \), and \(\{-2.4\} = -2.4 - (-3) = 0.6 \). Find all real \(x \) such that
\[
\{(x + 1)^3\} = x^3.
\]

PROBLEM 8. Limit of integrals.

Evaluate
\[
\lim_{x \to \infty} \int_x^{2x} \frac{dt}{\sqrt{t^3 + 4}},
\]
and justify your answer.

PROBLEM 9. Find the sum of squares.

Given that \(a \) and \(b \) are real numbers satisfying \(a^3 - 3ab^2 = 41 \) and \(b^3 - 3a^2b = 18 \), determine \(a^2 + b^2 \).

(Hint: Think complex numbers!)

PROBLEM 10. A special sum of squares.

Find positive integers \(x_1, x_2, \ldots, x_{31} \), at least one of which is greater than 2005, satisfying
\[
x_1^2 + x_2^2 + \cdots + x_{31}^2 = 31x_1x_2 \cdots x_{31}.
\]