Eleventh Annual Iowa Collegiate Mathematics Competition Iowa State University April 16, 2005

Problems by Jerry Heuer, Concordia College (heuer@cord.edu)
To receive full credit, all problems, unless otherwise stated, require complete justification.

PROBLEM 1. How big is that angle?

In the trapezoid at the right, the sides $A B$ and $C D$ are parallel, and the diagonal $B D$ is equal in length to side $A D$. Given that angle $C B D$ measures 30° and angle $D C B$ measures 110°, find the measure of angle $A D B$.

PROBLEM 2. From APs to Squares.

(a) Show that the sum

$$
1+2+3+\cdots+2004+2005+2004+\cdots+3+2+1
$$

is the square of an integer.
(b) Generalize the result in (a), with proof.

PROBLEM 3. Mystery function.

Suppose that the function f satisfies $f^{\prime}(x)=1+f(x)$ for all x. If $f(2)=3$, find:
(a) $f^{(10)}(2)$ (where $f^{(10)}$ denotes the 10th derivative of f);
(b) $f(3)$.

Justify your answers.

PROBLEM 4. Find a winning strategy.

A game board consists of a linear path of 2005 squares, numbered from 1 to 2005. A game piece is initially on square 1 , and two players alternately move it. On each move a player advances the piece by $1,2,3,4$ or 5 squares. Thus, the first player advances the piece to square $2,3,4,5$ or 6 . The player who moves onto square 2005 wins. Describe a winning strategy for one of the players, and make clear that it wins.

PROBLEM 5. Greatest common divisor.

Let $f(n)=25^{n}-72 n-1$. Determine, with proof, the largest integer M such that $f(n)$ is divisible by M for every positive integer n.

PROBLEM 6. Rational solutions.

Prove that for every rational number a, the equation

$$
y=\sqrt{x^{2}+a}
$$

has infinitely many solutions (x, y) with x and y rational.

PROBLEM 7. Fractional part equation.

For real numbers u, let $\{u\}=u-\lfloor u\rfloor$ denote the fractional part of u. Here $\lfloor u\rfloor$ denotes, as usual, the greatest integer less than or equal to u. For example, $\{\pi\}=\pi-3$, and $\{-2.4\}=-2.4-(-3)=0.6$. Find all real x such that

$$
\left\{(x+1)^{3}\right\}=x^{3} .
$$

PROBLEM 8. Limit of integrals.

Evaluate

$$
\lim _{x \rightarrow \infty} \int_{x}^{2 x} \frac{d t}{\sqrt{t^{3}+4}}
$$

and justify your answer.

PROBLEM 9. Find the sum of squares.

Given that a and b are real numbers satisfying $a^{3}-3 a b^{2}=41$ and $b^{3}-3 a^{2} b=18$, determine $a^{2}+b^{2}$.
(Hint: Think complex numbers!)

PROBLEM 10. A special sum of squares.

Find positive integers $x_{1}, x_{2}, \ldots, x_{31}$, at least one of which is greater than 2005 , satisfying

$$
x_{1}^{2}+x_{2}^{2}+\cdots+x_{31}^{2}=31 x_{1} x_{2} \cdots x_{31} .
$$

