
                                                   SOLUTIONS  for 
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Problems by  Richard A. Gibbs, Fort Lewis College (gibbs_d@fortlewis.edu) 
 

The problems are listed in no particular order of difficulty. Each solution requires a proof or justification. 

Answers only are not enough. Calculators are allowed but certainly not required. 
 

1. Solution:    1/1010 + 1/1011 + 1/1012 + 1/1013 + … + 1/2018  

              = 1 + 1/2 + 1/3 + … + 1/2018 – (1 + 1/2  + 1/3 + … + 1/1009)  

              = (1 + 1/3 + 1/5 + … + 1/2017) + (1/2 + 1/4 + 1/6 + … + 1/2018) −2(1/2 + 1/4 + 1/6 + … + 1/2018) 

              =  (1 + 1/3 + 1/5 + … + 1/2017) − (1/2 + 1/4 + 1/6 + … + 1/2018). 
  

2. Solution:  

     a) Consider the 2𝑛 terms in the expansion of   (1+1)(1+2)(1+3) … (1+n) = (n+1)! 

        They include 1 together with the sum of the 2𝑛 − 1 members of P(n).  Therefore T(P(n)) = (n+1)! – 1. 

    b) Similarly, consider the 2𝑛 terms in the expansion of  

       (1+1/1)(1+1/2)(1+1/3) … (1+1/n) = (2/1)(3/2)(4/3) … ((n+1)/n) = n+1 .  

      They include 1 together with the sum of the 2𝑛 − 1 members of T(R(n)). Hence T(R(n)) = (n+1)  – 1 = n. 

       Note: Both of these results can also be obtained by using induction. 

 3. Solution: For x+y = 1, we have f(f(x) + 1 – x) = 2f(1), a constant. Therefore f(x) + 1 – x is also a const., C,  

        so all solutions must be of the form f(x) = x + C – 1 = x + K, where K is a real constant. However, a simple  

        check shows that such functions do not satisfy the original recurrence relation; hence: no solutions. 
 

 

4. Solution: The answer is no. Color the sectors alternately black and white. Note that when a checker is  

           moved, the color of its sector changes. When the checkers are moved in pairs, either two checkers in  

           sectors of the same color are moved to two sectors of the other color, or two checkers in sectors of  

           different colors are moved to two sectors of different colors. In either case, the parity of the number of  

           checkers in sectors of either color doesn’t change; it either decreases by 2, increases by 2, or stays the  

           same. (BB < -- > WW, BW < -- > WB). Since, initially, there are 3 sectors of each color occupied,  

           there will always be an odd number of checkers in sectors of each color. 
 

5. Solution:  Since P(x) – 1 = (Ax + B) (𝑥 − 1)2 and P(x) + 1 = (Cx + D) (𝑥 + 1)2, we have  

P’(x) = A



(x 1)2  + 2(Ax + B)(x-1) = C(𝑥 + 1)2 + 2(Cx + D)(x+1).  

Therefore, both (x-1) and (x+1) are factors of the quadratic P’(x). It follows that  

P’(x) = K (𝑥2 − 1), and so P(x) = K (𝑥3

3⁄ − 𝑥)+ L 

For x = 1, and x = -1, we see that P(1) = 1 and P(-1) = -1.  

This leads to 



2
3
K  L 1 − 2

3⁄ 𝐾 + 𝐿 = 1 and  2 3⁄ 𝐾 + 𝐿 = −1,  

from which we obtain K = -3/2 and L = 0.      Finally, P(x) = − 𝑥3

2⁄ + 3𝑥
2⁄ . 

6. Solution: Let O be the origin, let P have coordinates (s,s), let S be the point with coordinates (s,0).     

          Considering the similar right triangles BOA and PSA, we have   
𝑏

𝑎
=

s

a−s
, and therefore 𝑠 =

𝑎𝑏

𝑎+𝑏
 

          Similarly(!), considering the similar right triangles B’OA’ and PSA’, we obtain 𝑠 =
𝑎′𝑏′

𝑎′+𝑏′  

                                  Note: s is half of the harmonic mean of a and b (and of a’ and b’). 



 Solution:   

a) For 𝑢 = 𝑥2 + 1, we have du = 2xdx, 𝑥2 = 𝑢 − 1, and the integral becomes 

     
1

2
∫

𝑢 − 1

𝑢3
𝑑𝑢 =

1

2
(−

1

𝑢
+

1

2𝑢2
) + 𝐶1 =

−1

2(𝑥2 + 1)
+

1

4(𝑥2 + 1)2
+ 𝐶1 =

−2𝑥2 − 1

4(𝑥2 + 1)2
+ 𝐶1 

 

b) For 𝑥 = tan 𝜃, 𝑑𝑥 = 𝑠𝑒𝑐2𝜃𝑑𝜃, and 𝑥2 + 1 = 𝑠𝑒𝑐2𝜃.   

    Also, from  𝑥2 = 𝑡𝑎𝑛2𝜃 =
𝑠𝑖𝑛2𝜃

1−𝑠𝑖𝑛2𝜃
, so 𝑠𝑖𝑛2𝜃 =

𝑥2

1+𝑥2
, and the integral becomes 

   ∫
𝑡𝑎𝑛3𝜃𝑠𝑒𝑐2𝜃

𝑠𝑒𝑐6𝜃
𝑑𝜃 = ∫

𝑡𝑎𝑛3𝜃

𝑠𝑒𝑐4𝜃
𝑑𝜃 = ∫ 𝑠𝑖𝑛3𝜃 cos 𝜃𝑑𝜃 =

𝑠𝑖𝑛4𝜃

4
+ 𝐶2 =

𝑥4

4(1+𝑥2)2
+ 𝐶2. 

c) To reconcile, note that  
𝑥4

4(1+𝑥2)2
−

−2𝑥2−1

4(𝑥2+1)2
=

1

4
. 

 

8. Solution:  Let 



G1 be a “maximal” girl -- that is, no girl danced with more boys than 



G1. (There could be  

        several “maximal” girls.) Let 



B2  be a boy who did not dance with 



G1 and let 



G2  be a girl who danced  

        with 



B2 . Among all the boys who danced with 



G1 there must be at least one who did not dance with 



G2   

        -- otherwise, 



G2  danced with more boys than 



G1, and 



G1 would not be “maximal”. Let 



B1 be a boy who  

         danced with 



G1 but did not dance with 



G2 . QED 

 

9. Solution: First, note that there are 𝐶𝑛
𝑛+𝑘−1 = 𝐶𝑘−1

𝑛+𝑘−1 terms in the expansion of (𝑎1 + 𝑎2 + 𝑎3 +  … + 𝑎𝑘)𝑛 

         In particular, the expansion of 



(a b c  d  e)10 has 𝐶10
14 = 𝐶4

14 = 1001 terms. 

      a) If the terms containing c’s, or d’s or e’s are eliminated from the expansion of 



(a b c  d  e)10,  

          what is left is just the expansion of  (𝑎 + 𝑏)10. Therefore  number of terms containing neither c’s nor 

          d’s nor e’s is the number of terms in the expansion of (𝑎 + 𝑏)10, which is 𝐶1
11 = 11. 

 

b) Terms in the expansion of 



(a b c  d  e)10 containing an a and/or a b are precisely the terms there 

that are not in the expansion of ( 10)edc  , and there are 𝐶2
12 = 66 such terms. So the answer is 

1001 – 66 = 935. 

 

10. Solution:  a)   √𝑛 + 1 − √𝑛 =
1

√𝑛+1+√𝑛
<

1

2√𝑛
    and    √𝑛 − √𝑛 − 1 =

1

√𝑛+√𝑛−1
> 

1

2√𝑛
. 

  

 b) From a) we have  ∑ (√𝑖 + 1 − √𝑖) < ∑
1

2√𝑖
< ∑ (√𝑖) − √𝑖 − 110102

𝑖=2
10102

𝑖=2
10102

𝑖=2    

           and, after multiplying by 2 and adding 1 throughout, we have 

       1 + 2√10102 + 1 − 2√2  < ∑
1

√𝑖
 < 2019

10102

𝑖=1
 

     But since 1 + 2√10102 + 1 − 2√2 > 1 + 2020 − 3 = 2018, 

    we see that 2018 < ∑
1

√𝑖
< 201910102

𝑖=1  and the result follows. 


