SOLUTIONS IOWA 2017

PROBLEM 1. Solve for \boldsymbol{x}.

The solution set is $\{x: 2.6 \leq x \leq 4.6\}$. We consider three cases: (i) $x<2.6$, (ii) $2.6 \leq x \leq 4.6$ and (iii) $x>4.6$. (i) If $x<2.6$ then $x-2.6<0$ and $x-4.6<0$ so $|x-2.6|=-x+2.6$ and $|x-4.6|=-x+4.6$. Thus $|x-2.6|+|x-4.6|=-2 x+7.2$, and $-2 x+7.2=2 \Longleftrightarrow-2 x=-5.2 \Longleftrightarrow x=2.6$. Thus there are no solutions with $x<2.6$.
(ii) Suppose that $2.6 \leq x \leq 4.6$. Then $|x-2.6|=x-2.6$ and $|x-4.6|=-x+4.6$, so $|x-2.6|+|x-4.6|=x-2.6-x+4.6=2$ for all such x.
(iii) Finally, suppose that $x>4.6$. Then

$$
|x-2.6|+|x-4.6|=x-2.6+x-4.6=2 x-7.2>9.2-7.2=2,
$$

so there are no solutions in this case. Thus the solution set is

$$
\{x: 2.6 \leq x \leq 4.6\} .
$$

PROBLEM 2: Recover blotted out digits.

The only possible values are $a=2, b=4$, and $6224427=(99)(62873)$. To find these, consider that the number

$$
62 a b 427=6 \cdot 10^{6}+2 \cdot 10^{5}+a 10^{4}+b 10^{3}+4 \cdot 10^{2}+2 \cdot 10+7
$$

must be 0 modulo 9 and 0 modulo 11. Modulo 9 we have

$$
0 \equiv 6+2+a+b+4+2+7 \equiv a+b+3,
$$

so $a+b \equiv 6 \quad(\bmod 9)$. Modulo 11 we have

$$
6-2+a-b+4-2+7 \equiv a-b+2,
$$

so $a-b \equiv 9 \quad(\bmod 11)$. Taking into account that a and b are decimal digits we conclude that $a+b=6$ or 15 , and $a-b=9$ or -2 . Also, $a+b$ and $a-b$ are of the same parity (their difference is $2 b$), so the possibilities are narrowed to

$$
a+b=15, \quad a-b=9
$$

or

$$
a+b=6, \quad a-b=-2 .
$$

The former case leads to $a=12, b=3$, so is not a solution. The latter case leads to $a=2, b=4$, the unique solution.

$$
\text { Page } 1 \text { of } 4
$$

PROBLEM 3: Two players and 2017 other persons.

Player A has a winning strategy. Initially the number, 2017, of other persons in the circle is odd, so there will be an even number on one of the arcs from A to B and an odd number on the other. This will always be the case when it is A 's turn to play, and A wins by always removing a person from the side having an even number of them. If that arc has zero persons, A removes B. If there are other persons on that arc, A removes one, leaving an odd number on both arcs, and B must again leave an even number on one arc and an odd number on the other. The total number of persons is reduced by one on each play, so eventually B leaves zero persons on one of the arcs, and A wins by then removing B.
(If initially the number of other persons is even, then B has a winning strategy, for after A 's first play there are an odd number, and B has available the winning strategy described above for A.)

PROBLEM 4: A sum divisible by 11.

Consider the eleven residue classes $0,1,2, \ldots, 10$ modulo 11 . At least one of these classes contains 11 of the 111 numbers, for if none contained more than 10 , there would be no more than 110 numbers in all. With eleven numbers each having the same residue $k \bmod 11$, their sum is divisible by 11: (WLOG, $a_{1}, a_{2}, a_{3}, \ldots, a_{11}$ each have residue k.)

$$
\begin{aligned}
& a_{1}=11 c_{1}+k \\
& a_{2}=11 c_{2}+k \\
& \vdots \\
& a_{11}=11 c_{11}+k
\end{aligned}
$$

Then $a_{1}+a_{2}+\cdots+a_{11}=11\left(c_{1}+c_{2}+\cdots+c_{11}\right)+11 k$, which is a multiple of 11 .

PROBLEM 5: The measure of an angle.

The answer is $\alpha=18^{\circ}$. Draw the radius $B D$, which is perpendicular to the tangent line $C E$. Then angle $B D A$ is $90^{\circ}-3 \alpha$, and because triangle $A B D$ is isosceles, angle $B A D$ is also $90^{\circ}-3 \alpha$. Now consider the sum of the angles in triangle $A C D$:

$$
\begin{aligned}
180^{\circ} & =\angle A C D+\angle C A D+\angle A D C \\
& =\alpha+\left(90^{\circ}-3 \alpha\right)+\left(180^{\circ}-3 \alpha\right) .
\end{aligned}
$$

This simplifies to $5 \alpha=90^{\circ}$, and we have $\alpha=18^{\circ}$.

PROBLEM 6: Factoring 3^{2017}.

There are 336 such triples. Let $x=3^{p}, y=3^{q}$ and $z=3^{r}$. Then $p \leq q \leq r, p+q+r=2017$, and $3^{r}<3^{p}+3^{q} \leq 2 \cdot 3^{q}<3^{q+1}$, so $r<q+1$ and therefore $r=q$. Then $p+2 q=2017$ with $p \leq q$, so the possible values of p are $1,3,5, \ldots, 671$, and $q=r=(2017-p) / 2$. The number of triples is therefore $672 / 2=336$.

PROBLEM 7: Roots in arithmetic progression.

They are $m=6$ and $m=-6 / 19$. The sum of the roots is 0 (coefficient of x^{3}), so to be in arithmetic progression the roots must be of the form $-3 a,-a, a, 3 a$. (If we write them $a-d, a, a+d, a+2 d$, then their sum is $0=4 a+2 d$ and $d=-2 a$. Then the roots are $a-d=3 a, a, a+d=-a$, and $a+2 d=-3 a$.) Thus

$$
x^{4}-(3 m+2) x^{2}+m^{2}=\left(x^{2}-9 a^{2}\right)\left(x^{2}-a^{2}\right)=x^{4}-10 a^{2} x^{2}+9 a^{4},
$$

and we have $m^{2}=9 a^{4}, 3 m+2=10 a^{2}$, so $m= \pm 3 a^{2}$. With $m=3 a^{2}$ we get $10 a^{2}=3 m+2=$ $9 a^{2}+2$, and $a^{2}=2 ; m=6$. In this case the roots are $-3 \sqrt{2},-\sqrt{2}, \sqrt{2}, 3 \sqrt{2}$, in arithmetic progression with common difference $2 \sqrt{2}$. With $m=-3 a^{2}$ we get $10 a^{2}=3 m+2=-9 a^{2}+2$, and $a^{2}=2 / 19 ; m=-6 / 19$. In this case the roots are $-3 \sqrt{2 / 19},-\sqrt{2 / 19}, \sqrt{2 / 19}, 3 \sqrt{2 / 19}$, in arithmetic progression with common difference $2 \sqrt{2 / 19}$.

PROBLEM 8: Bound for an integral.

By the mean value theorem we have

$$
\int_{0}^{x} f(t) d t=\int_{0}^{x}(f(t)-f(0)) d t=\int_{0}^{x} t f^{\prime}\left(c_{t}\right) d t
$$

for some c_{t} between 0 and t. Because f^{\prime} is nondecreasing,

$$
\int_{0}^{x} f(t) d t=\int_{0}^{x} t f^{\prime}\left(c_{t}\right) d t \leq \int_{0}^{x} t f^{\prime}(x) d t=\frac{x^{2}}{2} f^{\prime}(x) d t
$$

PROBLEM 9: A minimum value.

If, on the contrary, this minimum is greater than $1 / 4$, then each of $r-s^{2}, s-t^{2} t-u^{2} u-r^{2}$ is greater than $1 / 4$, and hence their sum is greater than 1 :

$$
1<\left(r-s^{2}\right)+\left(s-t^{2}\right)+\left(t-u^{2}\right)+\left(u-r^{2}\right)=\left(r-r^{2}\right)+\left(s-s^{2}\right)+\left(t-t^{2}\right)+\left(u-u^{2}\right) .
$$

This, in turn, implies that

$$
\left(r^{2}-r+\frac{1}{4}\right)+\left(s^{2}-s+\frac{1}{4}\right)+\left(t^{2}-t+\frac{1}{4}\right)+\left(u^{2}-u+\frac{1}{4}\right)<0 ;
$$

i.e., that

$$
\left(r-\frac{1}{2}\right)^{2}+\left(s-\frac{1}{2}\right)^{2}+\left(t-\frac{1}{2}\right)^{2}+\left(u-\frac{1}{2}\right)^{2}<0 .
$$

This, however, is impossible, so the minimum in question is less than or equal to $1 / 4$.

PROBLEM 10: Function value at 2017.

We show that $f(2017)=1 / 2017$. Note that if $y=f(x)$, they $f(y)=f(f(x))=1 / f(x)=$ $1 / y$. We are given that $f(4034)=4033$, and therefore $f(4033)=1 / 4033$. Since both 4033 and $1 / 4033$ occur as function values, so does 2017, by the continuity of f and the intermediate value theorem. But if $2017=f(r)$, then $f(2017)=1 / f(r)=1 / 2017$.

