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1. Find the greatest k for which 2016 = n3
1+n

3
2+ · · ·+n3

k , where n1, n2, . . . , nk are distinct positive
integers.

Solution: Because 13 + 23 + · · · + 93 = (1 + 2 + · · · + 9)2 = 452 = 2025, we see that 2016 =
33 + 43 + 53 + 63 + 73 + 83 + 93. We cannot do better than that as 103 > 93 + 13 + 23, so k = 7.

2. Evaluate
1

log16 2016
+

1

log49 2016
+

1

log64 2016
+

1

log81 2016
.

Solution: Because loga 2016 = ln 2016
ln a

, our expression is equal to

ln 16

ln 2016
+

ln 49

ln 2016
+

ln 64

ln 2016
+

ln 81

ln 2016
=

ln(16 · 49 · 64 · 81)
ln 2016

=
ln(20162)

ln 2016
= 2.

3. Consider 14 . . . 4, a ”one” followed by n ”fours”. Find all n for which 14 . . . 4 is a perfect square.

Solution: We see that n = 0 and n = 2 are solutions, while n = 1 is not. For n ≥ 3, write
14 . . . 4 = 4× 361 . . . 1 (with n− 2 ones). Then n = 3 is a solution and n > 3 is not as no perfect
square ends in 11 (the next to last digit of a square ending in 1 being even). Indeed, 361 . . . 1,
with at least two 1s, is of the form 4k+3 and so it cannot be a perfect square. Hence all solutions
are n = 0, 2, 3.

4. Find all pairs (a, b) of positive real numbers such that a+ b = 1 +

√
1 +

a3 + b3

2
.

Solution: We have (a− b)2 + (a− 2)2 + (b− 2)2 ≥ 0, so a2− ab+ b2 ≥ 2(a+ b)− 4. It follows that
1
2
(a+ b)(a2 − ab+ b2) ≥ (a+ b)2 − 2(a+ b), implying 1 + a3+b3

2
≥ (a+ b− 1)2. The equality holds

if and only if a = b = 2, so the only solution is (a, b) = (2, 2).

5. Find all primes p such that p2 divides 5p − 2p.

Solution: From Fermat’s Little Theorem, p divides 5p − 5 and p divides 2p − 2. Hence p divides
(5p − 5)− (2p − 2) = (5p − 2p)− 3. But p divides 5p− 2p, and so p divides 3. It follows that p = 3
and indeed 32 divides 53 − 23.

6. Evaluate
∞∑
n=1

n2 − 2

n4 + 4
.

Solution: The denominator rewrites as (n2 + 2)
2 − (2n)2 = (n2 + 2− 2n) (n2 + 2 + 2n).

Letting
n2 − 2

n4 + 4
=

An+B

n2 − 2n+ 2
+

Cn+D

n2 + 2n+ 2
, we obtain A = 1

2
, B = C = D = −1

2
.

Hence
n2 − 2

n4 + 4
=

1

2

[
n− 1

(n− 1)2 + 1
− n+ 1

(n+ 1)2 + 1

]
, and the sum telescopes to

1

2

[
0 +

1

2
− lim

n→∞

(
n

n2 + 1
+

n+ 1

(n+ 1)2 + 1

)]
=

1

4
.

1



7. Let A =

 6 −3 2
15 −8 6
10 −6 5

 .

(a) Prove that det(2I3 − A) = 1
det(A)

.

(b) Find the least n for which one of the entries of An is 2016.

Solution: (a) We have A2 =

11 −6 4
30 −17 12
20 −12 9

 = 2A− I3, implying (2I3 − A)A = I3.

Hence det (2I3 − A) det(A) = 1, and the conclusion follows.

(b) The equality A2 = 2A− I3 implies (A− I3)2 = 03. Hence the matrix N = A− I3
is nilpotent with N2 = 03. Then N

k = 03 for all k ≥ 2 and so

An = (N + I3)
n = nN + I3 = n

 5 −3 2
15 −9 6
10 −6 4

+

1 0 0
0 1 0
0 0 1

 =

5n+ 1 −3n 2n
15n −9n+ 1 6n
10n −6n 4n+ 1

 .

This can also be shown by examining A3, making a conjecture, and proving it by induction.

The least n for which one one of the entries of An is 2016 is n = 336.

8. Solve in real numbers the system of equations

{√
x (x2 + 10xy + 5y2) = 41
√
2y (5x2 + 10xy + y2) = 58.

Solution: The numbers 5, 10, 10, 5 give us important clues and makes us think of

(a± b)5 = a5 ± 5a4b+ 10a3b2 ± 10a2b3 + 5ab4 ± b5.

Adding the two given equations, after the second one is divided by
√
2, yields(√

x+
√
y
)5

= 41+29
√
2 =

(
1 +
√
2
)5
, and subtracting,

(√
x−√y

)5
= 41− 29

√
2 =

(
1−
√
2
)5
.

It follows that
√
x+
√
y = 1 +

√
2 and

√
x−√y = 1−

√
2, implying

√
x = 1 and

√
y =
√
2.

Hence the (unique) solution is (x, y) = (1, 2).

9. Evaluate

∫
(x2 + 1)

2

x6 − 1
dx.

Solution: We have
(x2 + 1)

2

x6 − 1
=
x4 + x2 + 1

x6 − 1
+

x2

x6 − 1
=

1

x2 − 1
+

1

3

(x3)
′

(x3)2 − 1
.

Hence
∫ (x2 + 1)

2

x6 − 1
dx =

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣+ 1

6
ln

∣∣∣∣x3 − 1

x3 + 1

∣∣∣∣+ C.

10. Find all continuous functions f : [0, 1]→ R such that 4
∫ 1

0
f(x) dx = π +

∫ 1

0
(1 + x2)f(x)2 dx

Solution: The presence of π and 1 + x2 makes us consider the equality
∫ 1

0
4

1+x2 dx = π.

The given condition rewrites
∫ 1

0

(√
1 + x2f(x)− 2√

1 + x2

)2

dx = 0,

implying
√
1 + x2f(x) =

2√
1 + x2

for all x in [0, 1]. Hence f : [0, 1]→ R, f(x) = 2
1+x2 .

2


