$22^{\text {nd }}$ Annual Iowa Collegiate Mathematics Competition

University of Northern Iowa, Saturday, April 2, 2016

Problems and Solutions by Dr. Titu Andreescu, University of Texas at Dallas titu.andreescu@utdallas.edu

1. Find the greatest k for which $2016=n_{1}^{3}+n_{2}^{3}+\cdots+n_{k}^{3}$, where $n_{1}, n_{2}, \ldots, n_{k}$ are distinct positive integers.

Solution: Because $1^{3}+2^{3}+\cdots+9^{3}=(1+2+\cdots+9)^{2}=45^{2}=2025$, we see that $2016=$ $3^{3}+4^{3}+5^{3}+6^{3}+7^{3}+8^{3}+9^{3}$. We cannot do better than that as $10^{3}>9^{3}+1^{3}+2^{3}$, so $k=7$.
2. Evaluate $\frac{1}{\log _{16} 2016}+\frac{1}{\log _{49} 2016}+\frac{1}{\log _{64} 2016}+\frac{1}{\log _{81} 2016}$.

Solution: Because $\log _{a} 2016=\frac{\ln 2016}{\ln a}$, our expression is equal to

$$
\frac{\ln 16}{\ln 2016}+\frac{\ln 49}{\ln 2016}+\frac{\ln 64}{\ln 2016}+\frac{\ln 81}{\ln 2016}=\frac{\ln (16 \cdot 49 \cdot 64 \cdot 81)}{\ln 2016}=\frac{\ln \left(2016^{2}\right)}{\ln 2016}=2
$$

3. Consider $14 \ldots 4$, a "one" followed by n "fours". Find all n for which $14 \ldots 4$ is a perfect square.

Solution: We see that $n=0$ and $n=2$ are solutions, while $n=1$ is not. For $n \geq 3$, write $14 \ldots 4=4 \times 361 \ldots 1$ (with $n-2$ ones). Then $n=3$ is a solution and $n>3$ is not as no perfect square ends in 11 (the next to last digit of a square ending in 1 being even). Indeed, $361 \ldots 1$, with at least two 1 s , is of the form $4 k+3$ and so it cannot be a perfect square. Hence all solutions are $n=0,2,3$.
4. Find all pairs (a, b) of positive real numbers such that $a+b=1+\sqrt{1+\frac{a^{3}+b^{3}}{2}}$.

Solution: We have $(a-b)^{2}+(a-2)^{2}+(b-2)^{2} \geq 0$, so $a^{2}-a b+b^{2} \geq 2(a+b)-4$. It follows that $\frac{1}{2}(a+b)\left(a^{2}-a b+b^{2}\right) \geq(a+b)^{2}-2(a+b)$, implying $1+\frac{a^{3}+b^{3}}{2} \geq(a+b-1)^{2}$. The equality holds if and only if $a=b=2$, so the only solution is $(a, b)=(2,2)$.
5. Find all primes p such that p^{2} divides $5^{p}-2^{p}$.

Solution: From Fermat's Little Theorem, p divides $5^{p}-5$ and p divides $2^{p}-2$. Hence p divides $\left(5^{p}-5\right)-\left(2^{p}-2\right)=\left(5^{p}-2^{p}\right)-3$. But p divides $5^{p}-2^{p}$, and so p divides 3 . It follows that $p=3$ and indeed 3^{2} divides $5^{3}-2^{3}$.
6. Evaluate $\sum_{n=1}^{\infty} \frac{n^{2}-2}{n^{4}+4}$.

Solution: The denominator rewrites as $\left(n^{2}+2\right)^{2}-(2 n)^{2}=\left(n^{2}+2-2 n\right)\left(n^{2}+2+2 n\right)$.
Letting $\frac{n^{2}-2}{n^{4}+4}=\frac{A n+B}{n^{2}-2 n+2}+\frac{C n+D}{n^{2}+2 n+2}$, we obtain $A=\frac{1}{2}, B=C=D=-\frac{1}{2}$.
Hence $\frac{n^{2}-2}{n^{4}+4}=\frac{1}{2}\left[\frac{n-1}{(n-1)^{2}+1}-\frac{n+1}{(n+1)^{2}+1}\right]$, and the sum telescopes to

$$
\frac{1}{2}\left[0+\frac{1}{2}-\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1}+\frac{n+1}{(n+1)^{2}+1}\right)\right]=\frac{1}{4}
$$

7. Let $A=\left(\begin{array}{ccc}6 & -3 & 2 \\ 15 & -8 & 6 \\ 10 & -6 & 5\end{array}\right)$.
(a) Prove that $\operatorname{det}\left(2 I_{3}-A\right)=\frac{1}{\operatorname{det}(A)}$.
(b) Find the least n for which one of the entries of A^{n} is 2016.

Solution: (a) We have $A^{2}=\left(\begin{array}{ccc}11 & -6 & 4 \\ 30 & -17 & 12 \\ 20 & -12 & 9\end{array}\right)=2 A-I_{3}$, implying $\left(2 I_{3}-A\right) A=I_{3}$.
Hence $\operatorname{det}\left(2 I_{3}-A\right) \operatorname{det}(A)=1$, and the conclusion follows.
(b) The equality $A^{2}=2 A-I_{3}$ implies $\left(A-I_{3}\right)^{2}=0_{3}$. Hence the matrix $N=A-I_{3}$ is nilpotent with $N^{2}=0_{3}$. Then $N^{k}=0_{3}$ for all $k \geq 2$ and so

$$
A^{n}=\left(N+I_{3}\right)^{n}=n N+I_{3}=n\left(\begin{array}{ccc}
5 & -3 & 2 \\
15 & -9 & 6 \\
10 & -6 & 4
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
5 n+1 & -3 n & 2 n \\
15 n & -9 n+1 & 6 n \\
10 n & -6 n & 4 n+1
\end{array}\right)
$$

This can also be shown by examining A^{3}, making a conjecture, and proving it by induction.
The least n for which one one of the entries of A_{n} is 2016 is $n=336$.
8. Solve in real numbers the system of equations $\left\{\begin{array}{l}\sqrt{x}\left(x^{2}+10 x y+5 y^{2}\right)=41 \\ \sqrt{2 y}\left(5 x^{2}+10 x y+y^{2}\right)=58 .\end{array}\right.$

Solution: The numbers $5,10,10,5$ give us important clues and makes us think of

$$
(a \pm b)^{5}=a^{5} \pm 5 a^{4} b+10 a^{3} b^{2} \pm 10 a^{2} b^{3}+5 a b^{4} \pm b^{5}
$$

Adding the two given equations, after the second one is divided by $\sqrt{2}$, yields
$(\sqrt{x}+\sqrt{y})^{5}=41+29 \sqrt{2}=(1+\sqrt{2})^{5}$, and subtracting, $(\sqrt{x}-\sqrt{y})^{5}=41-29 \sqrt{2}=(1-\sqrt{2})^{5}$.
It follows that $\sqrt{x}+\sqrt{y}=1+\sqrt{2}$ and $\sqrt{x}-\sqrt{y}=1-\sqrt{2}$, implying $\sqrt{x}=1$ and $\sqrt{y}=\sqrt{2}$.
Hence the (unique) solution is $(x, y)=(1,2)$.
9. Evaluate $\int \frac{\left(x^{2}+1\right)^{2}}{x^{6}-1} d x$.

Solution: We have $\frac{\left(x^{2}+1\right)^{2}}{x^{6}-1}=\frac{x^{4}+x^{2}+1}{x^{6}-1}+\frac{x^{2}}{x^{6}-1}=\frac{1}{x^{2}-1}+\frac{1}{3} \frac{\left(x^{3}\right)^{\prime}}{\left(x^{3}\right)^{2}-1}$.
Hence $\int \frac{\left(x^{2}+1\right)^{2}}{x^{6}-1} d x=\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|+\frac{1}{6} \ln \left|\frac{x^{3}-1}{x^{3}+1}\right|+C$.
10. Find all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that $4 \int_{0}^{1} f(x) d x=\pi+\int_{0}^{1}\left(1+x^{2}\right) f(x)^{2} d x$ Solution: The presence of π and $1+x^{2}$ makes us consider the equality $\int_{0}^{1} \frac{4}{1+x^{2}} d x=\pi$.
The given condition rewrites $\int_{0}^{1}\left(\sqrt{1+x^{2}} f(x)-\frac{2}{\sqrt{1+x^{2}}}\right)^{2} d x=0$, implying $\sqrt{1+x^{2}} f(x)=\frac{2}{\sqrt{1+x^{2}}}$ for all x in $[0,1]$. Hence $f:[0,1] \rightarrow \mathbb{R}, f(x)=\frac{2}{1+x^{2}}$.

