$22^{\text {nd }}$ Annual Iowa Collegiate Mathematics Competition

University of Northern Iowa, Saturday, April 2, 2016
Problems by Dr. Titu Andreescu, University of Texas at Dallas titu.andreescu@utdallas.edu

To receive full credit, all problems require complete justification.

1. Find the greatest k for which $2016=n_{1}^{3}+n_{2}^{3}+\cdots+n_{k}^{3}$, where $n_{1}, n_{2}, \ldots, n_{k}$ are distinct positive integers.
2. Evaluate $\frac{1}{\log _{16} 2016}+\frac{1}{\log _{49} 2016}+\frac{1}{\log _{64} 2016}+\frac{1}{\log _{81} 2016}$.
3. Consider $14 \ldots 4$, a "one" followed by n "fours". Find all n for which $14 \ldots 4$ is a perfect square.
4. Find all pairs (a, b) of positive real numbers such that $a+b=1+\sqrt{1+\frac{a^{3}+b^{3}}{2}}$.
5. Find all primes p such that p^{2} divides $5^{p}-2^{p}$.
6. Evaluate $\sum_{n=1}^{\infty} \frac{n^{2}-2}{n^{4}+4}$.
7. Let $A=\left(\begin{array}{ccc}6 & -3 & 2 \\ 15 & -8 & 6 \\ 10 & -6 & 5\end{array}\right)$.
(a) Prove that $\operatorname{det}\left(2 I_{3}-A\right)=\frac{1}{\operatorname{det}(A)}$.
(b) Find the least n for which one of the entries of A^{n} is 2016 .
8. Solve in real numbers the system of equations $\left\{\begin{array}{l}\sqrt{x}\left(x^{2}+10 x y+5 y^{2}\right)=41 \\ \sqrt{2 y}\left(5 x^{2}+10 x y+y^{2}\right)=58\end{array}\right.$
9. Evaluate $\int \frac{\left(x^{2}+1\right)^{2}}{x^{6}-1} d x$.
10. Find all continuous functions $f:[0,1] \rightarrow \mathbb{R}$ such that

$$
4 \int_{0}^{1} f(x) d x=\pi+\int_{0}^{1}\left(1+x^{2}\right) f(x)^{2} d x
$$

