Twentieth Annual Iowa Collegiate Mathematics Competition University of Northern Iowa, Saturday, March 1, 2014

Solutions

1. The closest point on the parabola is the one at which the slope is -2 , that is whose x-coordinate satisfies $2 x-4=-2$, so $x=1$ and the point in question is $(1,0)$.
2. No, such sequence does not exist. Since a_{i} are all positive, then $\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}>$ $\frac{a_{1}}{n}$ and the series $\sum_{n=1}^{\infty} \frac{a_{1}}{n}$ diverges, so the series in question is also divergent by the Comparison Test.
3. Since 8 and 13 are relatively prime it follows that 8 divides b and 13 divides a and thus $b=8 c$ and $a=13 d$ for some integers c and d. The given condition takes form $8 \cdot 13 d=13 \cdot 8 c$ and so $c=d$. Therefore $a+b=8 c+13 c=21 c$, so it is a composite number.
4. Letting $z=a+b i$ and squaring both sides of the given equation we obtain: $a^{2}+b^{2}=2\left((a-\sqrt{2})^{2}+b^{2}\right)$, which simplifies to $(a-2 \sqrt{2})^{2}+b^{2}=$ 4. It follows that the given set A coincides with the circle with the center at $(2 \sqrt{2}, 0)$ and radius 2 , so the largest value of $|z|$ is $2 \sqrt{2}+2$.
5. Suppose that all the integers are distinct. Then $\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\cdots+\frac{1}{\sqrt{n_{100}}} \leq$ $\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{100}}<1+\int_{1}^{100} \frac{d x}{\sqrt{x}}=19$, a contradiction.
6. Let $f(x)=\frac{1}{1+x^{3}+\sqrt{1+x^{6}}}$. Write $a(x)=\frac{f(x)+f(-x)}{2}$ and $b(x)=\frac{f(x)-f(-x)}{2}$, so $a(x)$ is even and $b(x)$ is odd and $f(x)=a(x)+b(x)$. Obviously $\int_{-1}^{1} f(x) d x=\int_{-1}^{1} a(x) d x$ as $\int_{-1}^{1} b(x) d x=0$. Since $a(x)=\frac{1}{2}$, therefore the integral in question is equal to $\int_{-1}^{1} \frac{1}{2} d x=1$.
7. Label the triangle in a standard way, so the sides a, b and c are opposite to the vertices A, B and C respectively. Let h_{a}, h_{b} and h_{c} be the heights perpendicular to the sides a, b and c respectively, and let S be the area of the triangle and r the radius of the incircle. Then we have: $2 S=$ $a h_{a}=b h_{b}=c h_{c}=r(a+b+c)$. By the assumption there exist positive integers x, y and z such that $h_{a}=x r, h_{b}=y r$ and $h_{c}=z r$. Since
$a h_{a}=r(a+b+c)>2 r a$ it follows that $h_{a}>2 r$, so $x \geq 3$, and similarly $y \geq 3$ and $z \geq 3$. We also obtain $r=\frac{2 S}{a+b+c}=\frac{2 S}{\frac{2 S}{x r}+\frac{2 S}{y r}+\frac{2 S}{z r}}=\frac{r}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}$ and therefore $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$. It is possible only if $x=y=z=3$, so the triangle is equilateral.
8. Observe that 2014 is divisible by 2 and not by 4 , so if the integers a, b, c and d exist, then exactly one of $a+b, b+c, c+d$ or $d+a$ is even and the other three must be odd, so the sum of all four factors must be odd. On the other hand $(a+b)+(b+c)+(c+d)+(d+a)=2(a+b+c+d)$, which is a contradiction, so the integers in question do not exist.
9. Let $x_{k}, 2 \leq k \leq 6$ denote the number of tokens having the value of k dollars. Observe that if either $x_{2}+x_{4} \geq 30$ or $x_{3}+x_{6} \geq 20$ or $x_{5} \geq 12$, then we can easily form $\$ 60$ value. On the other hand if none of them holds then $x_{2}+x_{4} \leq 29$ and $x_{3}+x_{6} \leq 19$ and $x_{5} \leq 11$, so $x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 59$, a contradiction.
10. Define the matrix B as $A=B+I$, where I is 4×4 identity matrix. Thus

$$
B=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0
\end{array}\right)
$$

and

$$
B^{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

Also $B^{n}=[0]$ for all $n \geq 3$. Therefore for $n \geq 2$ we have $A^{n}=$ $(I+B)^{n}=I^{n}+\binom{n}{1} I^{n-1} B+\binom{n}{2} I^{n-2} B^{2}$. It follows that

$$
\left.A^{n}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\binom{n}{1} & 1 & 0 & 0 \\
\binom{n}{2} \\
-\binom{n}{1}-\binom{n}{2} & 1 & 0 \\
1
\end{array}\right) \text { 0 } 101\right) ~
$$

Thus $F(n)=2\binom{n}{2}+4\binom{n}{1}+4=n^{2}+3 n+4$ and the smallest integer for which $F(n) \geq 2014$ is $n=44$.

