Twentieth Annual Iowa Collegiate Mathematics Competition University of Northern Iowa, Saturday, March 1, 2014

Problems by Jacek Fabrykowski, Youngstown State University (jfabrykowski@ysu.edu) To receive full credit, all problems require complete justification.

1. Find the point on the parabola $y=x^{2}-4 x+3$ that is closest to the line $y=-2 x-5$.
2. Determine whether there exists an infinite sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive numbers, such that the series $\sum_{n=1}^{\infty} s_{n}$ is convergent, where
$s_{n}=\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}$.
3. Let a and b be positive integers such that $8 a=13 b$. Show that the integer $a+b$ is composite.
4. Define the subset of complex numbers $A=\{z:|z|=\sqrt{2}|z-\sqrt{2}|\}$. Find $\max _{z \in A}|z|$.(For a complex number $z=a+b i$, its norm $|z|$ is defined by $\left.|z|=\sqrt{a^{2}+b^{2}}\right)$
5. Given positive integers $n_{1}, n_{2}, \ldots, n_{100}$ such that $\frac{1}{\sqrt{n_{1}}}+\frac{1}{\sqrt{n_{2}}}+\cdots+\frac{1}{\sqrt{n_{100}}}=20$.
Prove that at least two of the integers are equal.
6. Evaluate the integral $\int_{-1}^{1} \frac{d x}{1+x^{3}+\sqrt{1+x^{6}}}$.
(Hint: consider the even and the odd part of the given integrand function.)
7. In a certain triangle each height is an integer multiple of the radius of the inscribed circle. Prove that the triangle is equilateral.
8. Determine whether there exist integers a, b, c and d, such that the last four digits of $(a+b)(b+c)(c+d)(d+a)$ are 2014.
9. A bag contains 60 tokens, each one has value of $2,3,4,5$ or 6 dollars. Prove that one can choose some of them (without replacement) with the total value of $\$ 60$.
10. Let

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
-1 & -1 & 0 & 1
\end{array}\right)
$$

For a positive integer n, let $F(n)$ denote the sum of the absolute values of all the entries of A^{n}. Find the smallest n, for which $F(n) \geq 2014$.

