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The problems are listed (roughly) in order of difficulty. Each solution requires a proof or 
justification. Answers only are not enough. Calculators are allowed but certainly not required. 
 

1.  Product 1, Sum 0 

The product of 30 integers is one. Can their sum be zero? 

Solution: No. Clearly, the only integers in the product are 1 and -1. For the product to be one, 

there must be an even number of (-1)s. But for the sum to be zero there must be 15 1s and (-1)s. 
 

2.   As Easy as 3-4-5 

A circle of radius r is inscribed in a right triangle with leg 4r. Prove that the triangle is a 3-4-5 

right triangle. 

Proof:  We may assume that the radius is 1 and that one leg is 4. Let the triangle be ABC with 

right angle at C and AC = 4. Let P be the point of tangency of the incircle with hypotenuse AB, 

let Q be the point of tangency of the incircle with leg BC, and let R be the point of tangency of 

the incircle with leg AC. Since the two tangents to a circle from an exterior point have the same 

length (why?), we have AP = AR = 3. Let BP = BQ = x.  

Then    .    Solving, we have x=2, and the result follows. 

 

3.   Speaking of Pythagoras 

Prove that the inradius of any Pythagorean right triangle (a right triangle with integer side 

lengths) has integer length. 

Proof: It suffices to prove the result for primitive Pythagorean right triangles. Let the primitive 

right triangle be ABC with right angle at C. Then hypotenuse AB has odd length, and one of AC 

and BC is odd and the other is even. It follows that the perimeter of ABC is even. Let the inradius 

be R and let  be the point of tangency of the incircle with hypotenuse AB, let  be the point 

of tangency of the incircle with leg BC, and let  be the point of tangency of the incircle with 

leg AC. Let , and . Since , the hypotenuse has 

length X+Y, and the legs have length X+R and Y+R. Because the perimeter of  ABC is even and 

equals 2X+2Y+2R,     X+Y+R is an integer, and, since X+Y is an integer, the result follows. 

 

 

 

 



4.   Equal Integrals 

Let F be a polynomial function of degree 2n, let G be a polynomial function of degree 2n+1,  

and suppose that, for a and for some d > 0,  F(a+id) = G(a+id) for  i = 0, 1, 2, …, 2n.  

Let b=a+(2n)d.  Prove that  

Proof:  Let H(x) = G(x) – F(x). H(x) has degree 2n+1 and has zeros at a+id for i = 0, 1, 2, …, 2n. 

Letting c = a + nd, we see that H is symmetric about c.  

Since H(c+t) = -H(c-t), H is an odd function about c and therefore 

=  = 0.     The result follows. 

(Note: This result generalizes the curious fact that Simpson’s Rule is exact for cubics as well as 

quadratics.) 
 

5.  Φ  Fun 

Let Φ  = . Given positive real numbers X and Y with X > ΦY.  

Prove that   is closer to Φ than  is.              

Proof:   We must show that | Φ - X/Y | > | Φ - (X+Y)/X |. 

Since X/Y > Φ, Y/X < 1/Φ = Φ - 1, and so  Φ > 1 + Y/X = (X+Y)/X, and we want to show that  

X/Y - Φ > Φ - (X+Y)/X.    This holds  iff   2Φ < X/Y + (X+Y)/X,  = 1 + X/Y + Y/X   iff 

√5 < X/Y + Y/X   iff     (X/Y)^2 – (X/Y)√5 + 1 > 0  iff   X/Y < (√5 – 1)/2 or X/Y > (√5 + 1)/2 = Φ. 

Since X/Y > Φ, the result follows. 

(Challenge: Prove that the result also holds if Y < X < ΦY. That is, the result is true for positive 

real numbers X and Y with X>Y.) 
 

6.    N up, N down 

Choose N elements of {1, 2, 3, …, 2N} and arrange them in increasing order. Arrange the 

remaining N elements in decreasing order. Let  be the absolute value of the difference of the 

ith elements in each arrangement.   Prove that  

Proof:  Imagine the numbers 1 through N colored red and the numbers N+1 through 2N colored 

blue. The increasing arrangement will consist of some red elements followed by some blue 

elements. Suppose there are X red elements and so N-X blue elements. The decreasing  

 



arrangement will therefore consist of X blue elements followed by N-X red elements. So the ith 

elements of  the two arrangements will  consist of a “red” number paired with a “blue” number. 

It follows that  will be the sum of the blue numbers minus the sum of the red 

numbers, that is   

 

7.  Coin Tossing 

Al tosses a fair coin n times and Babs tosses a fair coin n+k times.  

Prove that the probability that Al tosses at least as many heads as Babs tosses is 

                    

Solution: Call a head tossed by Al or a tail tossed by Babs “G (good for Al)” and a tail tossed by 

Al or a head tossed by Babs “B (bad for Al)”. Imagine a sequence of 2n+k Gs and Bs, where the 

first n terms represent Al’s tosses and the next n+k terms represent Babs’ tosses. There are 

such sequences. Al will toss at least as many heads as Babs when the corresponding G-B 

sequence has no more than n Bs. (Why?) The number of such sequences is  

 , so the desired probability is as stated. 
 

8.  Function Phenomenon 

Let F and G be real valued functions defined on [0,1].  

Prove that there exist a and b in [0,1] such that     | ab – F(a) – G(b) |  ≥  1/4. 

Proof: Suppose that the result is false. That is, suppose that for all a, b in [0,1], 

 | ab – F(a) – G(b) |  <  1/4. 

Then for a=b=0 we have  

(*)  -1/4 < F(0) + G(0) < 1/4 ; 

for a=0 and b = 1 we have 

 (**)  -1/4 < F(0) + G(1)  < 1/4 ; 

for a=1 and b=0 we have 

 (***)  -1/4 < F(1) + G(0) < 1/4 ;  

and for a=b=1 we have 

 (****)  3/4 < F(1) + G(1) < 5/4. 

From (**) and (***)  we have F(0) + F(1) + G(0) + G(1) < 1/2 , while from 

(*) and (****) we have 1/2 < F(0) + F(1) + G(0) + G(1) – a contradiction. 
 

 

 

 

 



9.  On the Fence Post 

There are n posts, numbered 1 through n, arranged in a circle, and there are k colors of paint 

available. Prove that the number of different ways the posts can be painted so that adjacent posts 

have different colors is   
 

Proof: Note first that if the posts are arranged in a row (not in a circle), then the number of ways 

of painting them (with k colors) so that adjacent posts have different colors is .   Note 

that  is also the number of ways of painting n posts in a row so that adjacent posts have 

different colors AND the first and last post are also different colors. 

Let  be the desired number of paintings of i posts, and consider a desired painting of a 

circular arrangement of (i+1) posts. Suppose that post 1 is painted red. There are two cases to 

consider; 1) post i is not painted red, and 2) post i is painted red. 

For case 1), note that there are   ways to paint the first i posts and (k-2) choices for the 

color of post (i+1). For case 2), note that there are  ways to paint the first i posts 

and (k-1) choices for the color of post (i+1). Therefore,  

 

Since  is easily seen to be k(k-1), the result follows by induction. 
 

10.  Integer Sticks 

A line segment with odd integer length n = 2k+1 is randomly cut into three pieces, each of 

integer length. What is the probability that the three pieces can be formed into a (non-degenerate) 

triangle?  

Solution: Let the cuts be at x and y where x<y. Note that there are    such pairs of cuts.  

The three pieces, of lengths x, y-x, and n-y, will form a triangle provided that 1) x + (y-x) > n-y, 

or y > n/2;  2) x + (n-y) > y-x, or y-x < n/2; and 3) (y-x) + (n-y) > x, or x < n/2. 

Consider the lattice grid consisting of the  points (x,y) with 1 ≤ x < y ≤ n-1. We want to 

know how many of the points (x,y) satisfy the above three conditions. That is, we want to know 

how many lattice points are inside (not on the boundary of) the triangular region bounded by  

y = n/2, x = n/2, and y = x + n/2. 

For n = 2k+1, there are points in the lattice grid satisfying y < n/2 and x < n/2. Of these, 

k(k+1)/2 lie below the line y = x + n/2 (and (k-1)k/2 lie above). So the desired probability is 

.      (Challenge: What is the answer if the segment has even integer length?) 


