Fifteenth Annual Iowa Collegiate Mathematics Competition
 Iowa State University

Problems by
Richard A. Gibbs, Fort Lewis College
(gibbs_d@fortlewis.edu)
The problems are listed (roughly) in order of difficulty. Each solution requires a proof or justification. Answers only are not enough. Calculators are allowed but certainly not required.

1. Product 1, Sum 0

The product of 30 integers is one. Can their sum be zero?

2. As Easy as 3-4-5

A circle of radius r is inscribed in a right triangle with leg 4r.
Prove that the triangle is a 3-4-5 right triangle.

3. Speaking of Pythagoras

Prove that the inradius of any Pythagorean right triangle (a right triangle with integer side lengths) has integer length.

4. Equal Integrals

Let F be a polynomial function of degree $2 n$,
let G be a polynomial function of degree $2 n+1$, and suppose that,
for a and for some $d>0, F(a+i d)=G(a+i d)$ for $i=0,1,2, \ldots, 2 n$.
Let $b=a+(2 n) d$. Prove that $\int_{a}^{b} F(x) d x=\int_{a}^{b} G(x) d x$
5. Φ Fun

Let $\Phi=\frac{1+\sqrt{5}}{2}$. Given positive real numbers X and Y with $X>\Phi Y$.
Prove that $\frac{X+Y}{X}$ is closer to Φ than $\frac{X}{Y}$ is.

6. $\quad N \mathrm{up}, N$ down

Choose N elements of $\{1,2,3, \ldots, 2 N\}$ and arrange them in increasing order.
Arrange the remaining N elements in decreasing order. Let D_{i} be the absolute
value of the difference of the ith elements in each arrangement. Prove that

$$
D_{1}+D_{2}+\ldots+D_{N}=N^{2}
$$

7. Coin Tossing

Al tosses a fair coin n times and Babs tosses a fair coin $n+k$ times.
Prove that the probability that Al tosses at least as many heads as Babs tosses is

$$
\frac{2_{n+k} C_{0}+{ }_{2 n+k} C_{1}+\ldots+{ }_{2 n+k} C_{n}}{2^{2 n+k}}
$$

8. Function Phenomenon

Let F and G be real valued functions defined on $[0,1]$.
Prove that there exist a and b in $[0,1]$ such that

$$
|a b-F(a)-G(b)| \geq 1 / 4
$$

9. On the Fence Post

There are n posts, numbered 1 through n, arranged in a circle, and there are k colors of paint available. Prove that the number of different ways the posts can be painted so that adjacent posts have different colors is

$$
P_{n}=(k-1)^{n}+(-1)^{n}(k-1)
$$

10. Integer Sticks

A line segment with odd integer length $n=2 k+1$ is randomly cut into three pieces, each of integer length. What is the probability that the three pieces can be formed into a (non-degenerate) triangle?

