Fourteenth Annual Iowa Collegiate Mathematics Competition

Solutions by Jacek Fabrykowski
Youngstown State University

1. The integer m is not a square of an integer. To see this we notice that the last digit of a square of an integer can only be: $0,1,4,5,6$, or 9 . Alternatively, write the integer m the form

$$
m=123456 \ldots 20070000+2008
$$

Then m is of the form $16 k+8$, for some integer k. Hence the highest power of 2 that divides m is 3 .
2. Let the point (x, y, z) be the vertex on the plane $x+y+z=1$. Then the question asks for finding a maximum possible value of the product $x y z$.
The geometric and arithmetic means inequality gives

$$
\sqrt[3]{x y z} \leq \frac{x+y+z}{3} \quad \text { so, } \quad x y z \leq\left(\frac{x+y+z}{3}\right)^{3} \leq \frac{1}{27}
$$

This maximum value can be achieved by taking $x=y=z=\frac{1}{3}$.
Alternatively, we can write the volume of the box as function of two variables:

$$
V(x, y)=x y(1-x-y), \quad \text { where } x \geq 0, y \geq 0, \text { and } 0 \leq x \leq 1
$$

Setting the partial derivatives equal to zero gives

$$
V_{x}(x, y)=y(1-2 x-y)=0 \quad \text { and } \quad V_{y}(x, y)=x(1-2 y-x)=0
$$

and the only common solutions to these equations are

$$
(0,0),(0,1),(1,0), \quad \text { and } \quad\left(\frac{1}{3}, \frac{1}{3}\right) .
$$

The volume is zero at $(0,0),(0,1)$, and $(1,0)$, hence the maximum occurs at the point $(1 / 3,1 / 3)$, giving the maximum value

$$
V\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=\frac{1}{27}
$$

The problem can also be solved by applying the method of Lagrange multipliers. In this case, one obtains the equations:

$$
y z=\lambda, x z=\lambda, x y=\lambda, \quad \text { and } \quad x+y+z=1 .
$$

If at least one of x, y, or z is equal to 0 , then the volume is also zero, so we can assume that they are positive. Hence the equations imply that

$$
x=y=z=\frac{1}{3}
$$

and the value for the maximum volume being $V=1 / 27$.
3. When $x=0$, the functional relationship implies that

$$
f(y)=f(0+y)=y+f(0)
$$

so f is a linear function. By the divisibility condition we have
$2+f(0) \mid 5+f(0)$ if and only if $2+f(0) \mid(5+f(0))-(2+f(0))=3$,
so we must have $f(0)=1$. Therefore $f(y)=y+1$ and $f(2008)=2009$.
Alternatively, one can get a linear function by taking $y=-x$. This time the equation takes form $f(x)-x=f(0)$, and the rest of the solution is the same as above.
4. Take the derivative of each side to obtain, for every $x \geq 0$,

$$
3(f(x))^{2} f^{\prime}(x)=x\left(f(x)^{2}, \quad \text { that is, } \quad(f(x))^{2}\left(3 f^{\prime}(x)-x\right)=0\right.
$$

Hence for all $x>0$ we have either $f(x)=0$ or $3 f^{\prime}(x)-x=0$. Since $f(0)$ is expressed in terms of a definite integral from 0 to 0 , therefore $f(0)=0$. Because $f(x)$ is strictly increasing, it follows that $f(x)>0$ for all $x>0$. Thus $3 f^{\prime}(x)-x=0$ for all $x>0$, and

$$
f^{\prime}(x)=\frac{x}{3}, \quad \text { for all } x \geq 0
$$

It follows that $f(x)=x^{2} / 6$, for all $x \geq 0$.
5. We need to find positive integers k and m, such that $m \geq 2$, and

$$
(k+1)+(k+2)+\ldots+(k+m)=2008 .
$$

The left hand side of this equation is a difference between the sum of all positive integers $\leq k+m$, and the sum of all positive integers $\leq k$, so it is equivalent to

$$
\begin{aligned}
2008 & =\frac{(k+m)(k+m+1)}{2}-\frac{k(k+1)}{2} \\
& =\frac{1}{2}\left(k^{2}+2 k m+m^{2}+k+1-k^{2}-k\right) \\
& =\frac{1}{2} m(m+2 k+1) .
\end{aligned}
$$

Thus

$$
m(m+2 k+1)=4016=16 \cdot 251 .
$$

The factors m and $m+2 k+1$ are of different parity, and $m+2 k+1>m$. It follows that $m=16$, and $m+2 k+1=251$, giving $k=117$. Therefore $2008=118+119+\cdots+133$.
6. Yes, the sets are equal. The following divisibility conditions are equivalent:
$13|a+5 b \Longleftrightarrow 13| 16(a+5 b) \Longleftrightarrow 13 \mid 16(a+5 b)-13(a+6 b)=3 a+2 b$.
7. Consider the function $g(x)=x f(x)$. Since $f(1)=0$, it follows that $g(0)=g(1)=0$, and thus the function g satisfies the assumptions of the Rolle's Theorem on the interval $[0,1]$. Therefore $g^{\prime}(c)=0$ at some number $0<c<1$. So

$$
0=g^{\prime}(c)=f(c)+c f^{\prime}(c) \quad \text { and } \quad \frac{f(c)}{c}=-f^{\prime}(c)
$$

8. Since $(1+r i)^{3}=1+3 r i-3 r^{2}-r^{3} i$, then the condition of the problem implies that $1-3 r^{2}=3 r-r^{3}$, or equivalently

$$
0=r^{3}-3 r^{2}-3 r+1=(r+1)\left(r^{2}-4 r+1\right)
$$

Hence the roots are

$$
r_{1}=-1, \quad r_{2}=2-\sqrt{3}, \quad \text { and } \quad r_{3}=2+\sqrt{3}
$$

Therefore

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=15
$$

Alternatively, writing

$$
r^{3}-3 r^{2}-3 r+1=\left(r-r_{1}\right)\left(r-r_{2}\right)\left(r-r_{3}\right),
$$

and comparing coefficients implies that

$$
r_{1}+r_{2}+r_{3}=3 \quad \text { and } \quad r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}=-3 .
$$

So
$r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=\left(r_{1}+r_{2}+r_{3}\right)^{2}-2\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)=3^{2}-2 \cdot(-3)=15$.
9. The given equation is equivalent to

$$
A B-A-B+I=I, \quad \text { or to } \quad(A-I)(B-I)=I
$$

Since the matrices have integer entries, the determinants of $A-I$ and $B-I$ are integers, and the last equation implies that $\operatorname{det}(A-I)=$ $\operatorname{det}(B-I)= \pm 1$.
Both cases are possible: if $A=B=O$, then $\operatorname{det}(A-I)=\operatorname{det}(-I)=$ -1 , and if $A=B=2 I$, then $\operatorname{det}(A-I)=\operatorname{det}(I)=1$.
10. Let

$$
g(x)=\frac{f^{\prime}(x)}{f(x)} .
$$

The inequality

$$
2\left(f^{\prime}(x)\right)^{2} \geq(f(x))^{2}+\left(f^{\prime \prime}(x)\right)^{2} \geq 2 f(x) f^{\prime \prime}(x)
$$

implies that

$$
g^{\prime}(x) \leq 0,
$$

and therefore $g(x)$ is non-increasing on the interval $[0,1]$. Hence

$$
\ln f(1)=\int_{0}^{1} \frac{f^{\prime}(x)}{f(x)} d x \leq g(0) \cdot 1=1
$$

which implies that $f(1) \leq e$. The function $f(x)=e^{x}$ satisfies the conditions of the problem, with $f(1)=e$.

