Define a sequence \((s_n)\) recursively as follows: Let \(s_1 = 1\) and for \(n \geq 1\), let \(s_{n+1} = \sqrt{1 + s_n}\). Prove that \((s_n)\) converges, and then find the limit.

Show work to be graded below, and use the reverse side of the page to continue if necessary.
Let C be a non-empty collection (possibly infinite) of compact subsets of \mathbb{R}.

(1) Prove that $K = \bigcap_{C \in C} C$ is a compact set.

(2) Give an example that illustrates that the union of a family of compact sets need not be compact.

Show work to be graded below, and use the reverse side of the page to continue if necessary.
Assume A and B are two sets with m and n elements, respectively.

(1) How many one-to-one functions are there from A and B?

(2) How many one-to-one and onto functions are there from A to B?

Show work to be graded below, and use the reverse side of the page to continue if necessary.
Let p and q be distinct prime numbers. Find the number of generators of the group \mathbb{Z}_{pq}.

Show work to be graded below, and use the reverse side of the page to continue if necessary.
Let G be a group and H a subgroup of G with index $(G : H) = 2$. Prove that H is a normal subgroup of G.

Show work to be graded below, and use the reverse side of the page to continue if necessary.
The Fibonacci numbers are defined as
\[f_1 = f_2 = 1 \]
and
\[f_{n+1} = f_n + f_{n-1} \]
for \(n \geq 3 \).

(1) List \(f_1, f_2, \ldots, f_7 \).
(2) Illustrate, using the list from (a), that \(f_{2n+1} = f_{n+1}^2 + f_n^2 \) for \(n = 1, 2, 3 \).
(3) Prove that \(f_{2n+1} = f_{n+1}^2 + f_n^2 \) for all \(n \in \mathbb{N} \).

Show work to be graded below, and use the reverse side of the page to continue if necessary.
Let \(a, b, m, M \) be real numbers with \(0 < m \leq a \leq b \leq M \), prove that

\[
\frac{2\sqrt{mM}}{m + M} \leq \frac{2\sqrt{ab}}{a + b}
\]

Show work to be graded below, and use the reverse side of the page to continue if necessary.
A soccer ball is stitched together using white hexagons and black pentagons. Each pentagon borders five hexagons. Each hexagon borders three other hexagons and three pentagons. Each vertex is of valence 3 (meaning that at each corner of a hexagon or pentagon, exactly three hexagons or pentagons meet). How many hexagons and how many pentagons are needed to make a soccer ball? **Hint:** Euler’s Polyhedron Formula states that $V - E + F = 2$, where V is the number of vertices, E is the number of edges (i.e., the line adjoining two vertices) and F is the number of faces (hexagons or pentagons).

Show work to be graded below, and use the reverse side of the page to continue if necessary.