RANDOM GRAPHS AND A DISCRETE APPROACH
TO QUANTUM GRAVITY

PATRICK MCDONALD

ABSTRACT. We study a collection of Markov chains with values in
the collection of partial orderings of the natural numbers. These
chains arise naturally in the context of discrete theories of quantum
gravity and include the well-studied example of “transitive perco-
lation.” Using transitive percolation as a case study, we present
recent results and sketch corresponding developments in the asso-
ciated context of quantum gravity.

1. INTRODUCTION

The study of random graphs was formalized by Erdos and Renyi in
the early 1960’s. This expository note concerns a model of random
graphs investigated twenty years ago by Barak and Erdos. This model,
called transitive percolation in the physics community, has recently
been of interest in developing discrete models for quantum gravity.

Transitive percolation, the standard model for producing random
partial orders on the natural numbers, is easy to describe: Fix 0 < p <
1 and consider the following inductive scheme:

(1) Let A be the directed graph consisting of a single labeled vertex
Vo.-

(2) Given a directed graph on n vertices labeled vg, v,...,v,_1
with edges consistent with the natural ordering on the vertex
labelings, introduce a new vertex (labeled n) and with proba-
bility p introduce an edge directed from the new vertex to each
of the existing vertices, the addition of each edge being inde-
pendent of all other edges.

(3) Take the transitive closure of the partial order obtained once
the random edges are determined.

A great deal is known about transitive percolation: Barak and Erdos
[BE] investigated the width of random graphs generated via transitive
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percolation. Treating an edge between vertices v; and v; as defining
an ordering relation on the vertex lables, Albert and Friese established
concentration phenomena for the height and set-up number of associ-
ated random order in the case p = 5 [AF]. Extending work on random
orders, Bollobéds and Brightwell gave precise estimates for the width of
a random graph [BB1] and for the corresponding dimension [BB2] (see
[JLR] for an extensive introduction to random graphs and transitive
percolation).

Using transitive percolation to generate random partial orders on the
natural numbers, Alon, Bollobas, Brightwell and Janson [ABBJ] study
the properties of posts (ie nodes which are connected to all other nodes
under the partial order). Since the appearance of [ABBJ] a great deal
of work has gone into understanding the properties of posts (cf [BB3],
[KP] and references therein). In addition, much work has focussed on
applications outside of mathematics which involve transitive percola-
tion and post formation. One such application involves cosmology.

For those working in cosomology, transitive percolation provides the
simplest example from a collection of toy models which serve as clas-
sical precursors for a discrete theory of quantum gravity. This theory,
called the causet model of quantum gravity, has been developed by
Sorkin and his collaborators (cf [BLMS], [BDGHS1], [BDGHS2], [DS],
[MORS], [RS], [S1], [S2] and references therein). At its most primitive,
the causal set idea posits that the structure of space and time is that
of a partially ordered locally finite set (causet). The dynamics for the
theory are random and the familiar objects of associated to general rel-
ativity (in particular a manifold with Lorentz metric) appear as good
approximations to causets (not vice-versa). The properties of random
graphs cited in the above literature take on familiar physical signifi-
cance (eg the length of the longest chain between two causally related
elements gives the proper time, etc).

The primary objective of this note is to provide an introduction to
causet dynamics through the example of transitive percolation. As
such is the case, we focus on computing simple examples which pro-
vide motivation for the definitions of the fundamental objects which
describe causet dynamics, relegating proofs of the technical results to
the references. Of the many references dedicated to causet dynamics,
[RS] and [S3] are recommended reading for those interested in a more
detailed introduction to causets and transitive percolation.
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Ficure 1. Examples of graphs

2. FOUNDATIONS AND GENERAL COVARIANCE

From our description of transitive percolation, the process takes val-
ues in the collection of directed graphs with vertices indexed by the
natural numbers, where the edge directions respect the vertex labels.
We will call the collection of such graphs on n vertices n-allowable.
We will denote the collection of n-allowable graphs by C, and we will
denote by C the state space of our process:

C =UC,.

We will always draw graphs with labeled nodes arranged vertically.
For example, Figure 1 features three directed graphs, exactly one of
which is allowable (the first graph in the picture does not respect vertex
labelling, while the second is not transitively closed). In what follows,
vertex labels will be understood to be increasing with height and thus
edge directions will be understood to be directed downward.

From our description of transitive percolation it is clear that the
discrete transitions which occur involve the introduction of a single new
vertex and edges which connect the new vertex to previously introduced
vertices - and nothing more. In particular, given any allowable graph
C € C,, there is a finite collection of n-allowable graphs to which C'
can evolve with nonzero probability under transitive percolation. Given
C € C, we will refer to the finite collection of n-allowable graphs to
which C' can evolve with positive probability as the family of C, denoted
F(C). We will refer to the transitions C — D € F(C') which occur with
positive probability under transitive percolation as allowable.

Figure 2 provides a “seed” (the allowable graph C') and all allow-
able transitions (via transitive percolation) from C' to another allow-
able graph D. As indicated in the figure, there are exactly six such
transitions for the given graph C'; the corresponding probabilities are
recorded in Table 1.
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FIGURE 2. An allowable graph and its family

Prob(C — D;) = (1 — p)3 Prob(C — D,) = (1 — p)p?
Prob(C' — Dy) = (1 — p)?p| | Prob(C — D5) = (1
Prob(C — D3;) = (1 —p)*p | | Prob(C' — Dg) = p?

Table 1: Transition probabilities for figure 2

We will interpret the existence of an edge between vertices as the
statement “in the causal past of.” We will call elements in the causal
past of a vertex v, the precursors of v,. If the only path between a
pair of vertices v;, v, with [ < n is a single edge, we will say that v,
is in the immediate causal past of v,. If v; is in the immediate causal
past of v, we will say that v; is maximal in the past of v,. Given an
allowable transition C, > C'— D € F(C), we set

(2.1) r = number of elements in the causal past of v,

(2.2) m = number of maximal elements associated to v,,. .

Table 2 records the values of  and m for each of the transitions given
in Figure 2:

—
)
—_
—_
\]
\]
w

Table 2: Precursors and maximal elements for Figure 2
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FIGURE 3. Two examples of evolution under transitive percolation

It is easy to check that for any of the transitions pictured in Figure
2, we have

(2.3) Prob(C — D;) = p™(1—p)*".

In fact, the analog of (2.3) holds for any allowable transition under
transitive percolation: If C € C,,_; and C' — D € F(C) is an allowable
transition, then

(2.4) Prob(C — D) = p™(1—p)""

where r and m are given as in (2.1) and (2.2), respectively. To see
that the computation is correct, note that to completely specify the
transition, we need only specify the number of edges drawn to vertices
in the immediate past, and the size of the past (ie the size of the
transitive closure of the graph obtained by adding edges between the
new vertex and the chosen maximal elements).

Formula (2.4) makes it easy to compute transition probabilities for
transitive percolation and thus to study properties of the trajectories
associated to transitive percolation as a process taking values in the
collection of random graphs. Again, we begin with an example.

Figure 3 contains possible initial segments for transitive percolation
trajectories. Using (2.4) we can compute the probability that any given
trajectory begins as pictured:

PI"Ob(C() — CH)
PI‘Ob(CH — 012)
PI'Ob(Clg — 013) = (1 — p)2p

I
[a—
|
=
~—
N
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FIGURE 4. Isomorphism classes of allowable graphs

and

PI'Ob(C() — 021) = (1 — p)
PI'Ob(CQl — 022) = (1 — p)p
PI'Ob(CQQ — 023) = (1 — p)2p

We conclude that
PI'Ob(OU — 011 — 012 — 013) — PI'Ob(C() — 021 — 022 — 023).

It isn’t hard to believe that the example developed in Figure 3 and the
computation above represent a property of transitive percolation which
is reflected by other sequences of transitions. To properly quantify this
phenomena, we begin by noting that if we formally “erase labels” from
the diagrams appearing in Figure 3, the states corresponding to ('3
and Css are indistinguisable; Figure 4 encodes this observation.

Definition 2.1. We say that two allowable graphs are isomorphic if
there is a bijection which maps vertices to vertices and preserves edge
structure. We will call the collection of equivalence classes of allowable
graphs causets. We denote the collection of equivalence classes of n-
allowable graphs by C,. We denote the collection of all causets by C :

C = UG,

There is a natural physical interpretation we can associate to the
study of “allowable graphs with labels erased:” By introducing a label-
ing, we introduced an element of “temperal gauge.” Thus, by erasing
the labelings, we are attempting to study those properties which do
not depend on temporal gauge, ie those that are covariant (for more
on this theme see [BDGHS1] and references therein).

Given C' € C,, let C be any allowable graph representing C. We
can define the family of C' as those causets which arise as equivalence
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classes of elements of F'(C'). This said, we can broaden the class of
processes which we will consider:

Definition 2.2. We say that a Markov chain M with state space C
belongs to the collection Mgc if the transition probabilities of M sat-
isfy:
(1) (Locality) Given C € C,, let Prob(C' — D) denote the tran-
sition probability corresponding to an evolution from causet
C to causet D. Then Prob(C' — D) = 0 if D ¢ F(C) and
ZDeF(C) Prob(C — D) =1
(2) (General Covariance) Let C' € C,. Suppose P; and P, are two
paths from the trivial causet consisting of a single point to C'
and write P; = {l;1,...,lin} where the [;; are the links defining
the path P;. Then

[[Prob(isx) = [ [ Prob(la).
k=1 k=1

It is clear from our description that transitive percolation defines a
Markov process taking values in causets which satifies locality. Our
computations suggest that it also satisfies general covariance. Indeed,
this is a theorem of Rideout and Sorkin:

Theorem 2.3. [RS]| Transitive percolation satisfies general covariance.

We will henceforth consider transitive percolation with state space

C.

3. BELL CAUSALITY

In Figure 5 we picture two possible transitions between allowable
graphs.

In Figure 6 we consider two causet transitions with initial causet
representing the isomorphism class of the allowable graphs appearing
in Figure 5 (we have omitted edges which clearly must be present given
that all graphs must be transitively closed). Note that each transition
involves drawing connections from a new vertex to a number of the
vertices in Cy. We have circled the vertices of Cy which are involved
in each transition. For each such transition, the circled vertices form a
causet; the the precursor causet of each transition.

Using the information represented in Figure 5 and Figure 6 we can
prescribe an algorithm to construct “induced” causet transitions:

(1) Construct the union of the causets involved in each of the tran-
sitions. This is a causet.
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FIGURE 5. Causet transitions
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FIiGURE 6. Causet transitions

(2) Beginning with the union of causets involved in each transition,
add a vertex and edges as was done in the original transitions.
This produces a pair of transitions: the induced causet transi-
tions.

For the transitions given in Figure 5 and Figure 6 the resulting induced
transitions are pictured in Figure 7 (cf [RS]):

For the transitions described in Figure 6 and Figure 7 we can com-
pute the associated transition probabilities:

PI"Ob(CO — CH) = p(]_ — p)2
Prob(Cy — Cy) = p(1 —p)®
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FIGURE 7. Induced causet transitions from figure 3

and

Prob(By — By1) = p

Prob(By — By1) = p(1—p).
We note
(3.1) Prob(By — B;;)  Prob(Cy — Chy)

PI'Ob(BO — B21) N PI'Ob(CO — 021) ’

Definition 3.1. Let M be a Markov chain taking values in the collec-
tion of causets. Let Cy — C1; and Cy — Cy; be transitions involving
the introduction of one vertex v,,. Let

(3.2) BO = paStCu (Un) U paStCm (Un)

and let By — B, and By — By be the induced transitions obtained
by adding a vertex to the vertex set of By and adding edges determined
by the transitions Cy — C;; and Cy — Cy, respectively. If

Prob(By — Bi1) Prob(Cy — Chy)
Prob(By — Byy)  Prob(Co — Cay)
for any allowable one step transitions Cy — C; and Cy — Uy, we say
that M satisfies Bell Causality.
With this definition, we can establish (as did Rideout and Sorkin):

Theorem 3.2. [RS] Transitive percolation satisfies Bell causality.

(3.3)

4. PRELIMINARY CLASSIFICATION

Definition 4.1. We say that a Markov chain M taking values in the
collection of causets and satisfying locality (Definition 2.2), general
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covariance (Definition 2.2) and Bell causality (Definition 3.1) is ad-
missable.

We have seen that transitive percolation is admissable. Our present
goal is to identify other examples. A central role in our investigation
will be played by transitions between causets with no relations:

Definition 4.2. Let M be an admissable Markov chain. Let A, €
C, be the causet having n + 1 vertices and no edges. The defining
probabilities associated to M are given by

(4.1) ¢, = Prob(4, — A,41).
We say that M is generic if the defining probabilities for M satisfy
¢n > 0 for all n.

We can compute the defining probabilities for transitive percolation:

(4.2) @ = (1-p)

and thus transitive percolation is generic.

It turns out that defining probabilites completely determine the tran-
sition probabilities of the corresponding chain [RS], [AM1].

For the purpose of computation, it’s useful to introduce a second
description of transitive percolation.

Definition 4.3. Let M be an admissable chain with defining proba-
bilities ¢,. The coupling constants associated to M are defined by

- = e ()

Using the binomial theorem, we can give a closed form expression
of the coupling constants for transitive percolation in terms of defining

parameter p :
p n
e ()
1—p

Note that for transitive percolation we can use (4.3) to recover the
defining probabilities in terms of the coupling constants [RS]:

(4.3) R ;(@ b

In fact, the identity (4.3) holds between the coupling constants and
defining probabilities of any admissable generic Markov chain:
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Theorem 4.4. [RS]|Let M be an admissable generic Markov chain with
defining probabilities q, and coupling constants t,,. Then

v = e (i)
1z i(g) ty.

dn =0

That (4.3) holds for generic admissable chains can be checked di-
rectly via computation. The identity can also be checked by giving a
second description of transitive percolation (as well as any other generic
admissable chain.

Since defining probabilities determine a generic admissable chain and
coupling constants determine the corresponding defining probabilities,
it should be possible to classify admissable generic chains via coupling
constants. This is indeed the case:

Theorem 4.5. [RS] Suppose that t,, is a sequence of real numbers and
suppose that the sequence q, is defined by (4.3). Then the sequence g,
form the defining probabilities of an admissable Markov chain if and
only if the sequence t, is nonnegative.

5. CosMiCc RENORMALIZABILITY

Definition 5.1. Let S be the collection of nonegative sequences with
positive first term. The renormalization map R : S — S is defined by

tn+1 + tn
5.1 R({tk}))n —_—
(5.1 R({) = =22
We say that a sequence {¢,} is stable under renormalization if
{t.} € MZLRMS).

We say that a Markov chain is renormalizable if its associated collec-
tion of coupling constants is renormalizable. We say that a generic
admissable chain is a gcd chain if it is renormalizable.

We can compute the action of the renormalization map on the cou-

pling constants associated to transitive percolation: Setting § = £

1-p’

we have
(5:2) Rt = T

(5.3) = "
That is,
Theorem 5.2. [MORS| Transitive percolation defines a gcd chain.
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There are good physical reasons for introducing the notion of cos-
mic renormalizability. Briefly, the renormalization operator models the
effect of cycles of cosmic expansion and contraction (see [MORS] and
[S1] for more details).

There is a sense in which every gcd chain is composed of transi-
tive percolations. To make this more precise, suppose that Hj(z) is a
Heaviside function with jump at ¢ :

0 ifz<d
o = {505

We can write the coupling constants of transitive percolation as mo-
ments of a Stieltjes measure:

(5.4) ty = /sde5(s).

We have

Theorem 5.3. [AM1] Suppose that M is an admissable Markov chain
which is generic. Let {t,} be the coupling constants associated to M.

Then M s a ged chain if and only if there is a nondecreasing function
a: R — R such that

(5.5) t, = /]R _"das).

The proof of this theorem involves the classical moment problem.
The theorem itself gives a map between solutions of the classical mo-
ment problem and gcd chains.

6. COROLLARIES

In addition to providing new examples gcd chains, Theorem 5.3 leads
to a collection of both mathematical and physical results. We focus our
attention on one such class of results: the formation of posts.

Let M be a gcd chain. The trajectories associated to M are paths
in the collection of admissable graphs: each such path consists of a
sequence {C,,}, C, € C, where C,,,; € F(C,) for every n. By construc-
tion, each such path defines a partial order on the natural numbers:
given a path, {C,,} and two natural numbers n and m, we say that m
comes before n if there is an edge between n and m in C),.

Definition 6.1. Let P be a partial order on the natural numbers. A
natural number n is a post with respect to P if n is P-ordered with
respect to every other natural number.

The notion of a post has proven to be very useful: posts appear in a
applications in a number of fields including mathematics, physics and
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computer science (cf [BB3] and references therein). We focus on their
applications in cosmology.

From the point of our discrete model, post formation corresponds to
a collapse of the universe, followed by a re-expansion. For this reason
it is important to know whether they occur. For the case of transitive
percolation, this is a result af Alon, Bollobas, Brightwell and Jantzen:

Theorem 6.2. [ABBJ] Under the dynamics associated to transitive
percolation, posts occur infinitely often, almost surely.

Using Theorem 5.3, we can extend this result to a large collection of
gcd chains:

Theorem 6.3. [AM2] Let M be a ged chain represented by a nonde-
creasing function o : R™ — R. Suppose that the support of the measure
dac 1s compact and that the supremum of the support is isolated. Then
under the dynamics associated to M, posts occur infinitely often, almost
surely.

REFERENCES

[AF] M. Albert and A. Friese Random graph orders, Order 6 19-30 (1989).

[ABBJ] N. Alon, B. Bollobds, G. Brightwell and S. Janson Linear extensions of a
random partial order, Ann. Appl. Prob. 4 108-123 (1994).

[AM1] A. Ash and P. McDonald Moment problems and the causal set appraoch to
quantum gravity, J. Math. Phys. 44 1666-1678 (2003).

[AM2] A. Ash and P. McDonald Random partial orders, posts and discrete quantum
gravity, (submitted).

[BE] A. Barak and P. Erdés On the mazimal number of strongly independent
vertices in a random acyclic directed graph, STAM J. Algebraic Discrete
Methods 5 508-514 (1984).

[BB1] B. Bollobéds and G. Brightwell The width of random graph orders, Math.
Soc. 20 69-90 (1995).

[BB2] B. Bollobas and G. Brightwell The dimension of random graph orders, In:
The mathematics of Paul Erd os, volume 2, Springer, Berlin, 51-69 (1997).

[BB3] B. Bollobds and G. Brightwell The structure of random graph orders, STAM
J. Discrete Math. 10 318-335 (1997).

[BLMS] L. Bombelli, J. Lee, D. Meyer and R.D. Sorkin Spacetime as a causal set,
Phys. Rev. Lett. 59 521-524 (1987).

[BDGHS1] G. Brightwell, H. F. Dowker, R. S. Garcia, J. Henson, and R. D.
Sorkin General Covariance and the “Problem of Time” in discrete cosmol-
ogy, (preprint 2002) gr-qc/0202097.

[BDGHS2] G. Brightwell, H. F. Dowker, R. S. Garcia, J. Henson, and R. D. Sorkin
“Observables” in causal set cosmology, (preprint 2002) gr-qc/0210061.

[D1] D. Dou Causal sets, a possible interpretation of black hole entropy, and
related topics, Phd Thesis (SISSA, Trieste, 1999) gr-qc/0106024.

[DS] D. Dou and R. D. Sorkin Black hole entropy as causal links, (preprint 2003)
gr-qc/0302009.



14 PATRICK MCDONALD

[JLR] S. Janson, T. Luczak and A Rucinski Random Graphs Wiley Interscience
Series in Discrete Mathematics and Optimization. Wiley Interscience, New
York, (2000).

[KP] J. Kim and B. Pittel On the tail distribution of interpost distance, J. Comb.
Theory B 80 49-56 (2000).

[MORS] X. Martin, D. O’Connor, D. Rideout and R. Sorkin On the “renormal-
ization” transformations induced by cycles of expansion and contraction in
causal set cosmology, preprint, (2002).

[RS] D. Rideout and R. Sorkin A classical sequential growth dynamics for causal
sets Phys. Rev. D 61 024002 (2000).

[S1]  R. D. Sorkin Indications of causal set cosmology, Int. J. Theor. Phy. 39 (7)
1731-1736 (2000).

[S2] R. D. Sorkin Forks in the road, on the way to quantum gravity, Int. J. Theor.
Phy. 36 (7) 27592781 (1997).

[S3] R. D. Sorkin Causal sets: discrete gravity, preprint gr-qc/0309009 (2003).

NEw COLLEGE OF FLORIDA, SARASOTA, FL 34243
E-mail address: ptm@virtu.sar.usf.edu



