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0. Introduction

Games have challenged and entertained mankind throughout its history, as is witnessed
by the popularity of chess, "Go", etc.. The main appeal of these games is certainly their
complexity and the lack of complete winning strategy (in the mathematical sense). On the
other hand, once the winning strategy is known, many simpler games (e.g. Nim) loose
their appeal as competitive games, but gain popularity as good recreational topics in
mathematical education. The search for such winning strategies have also attracted more
and more research interests in the recent decades.

In this talk, I will present some simple combinatorial games and their winning strategies,
and hope to illustrate the important role they should have in our classrooms.

1. Some well-known examples

We start with a "Problem of the Week" I posed at Polk Community College.
A "Problem of the Week".
To part with Year 2002 and welcome Year 2003, Alice and Bob play a 'domino' game on
a gigantic 2002-by-2003 rectangular chess board. The players alternate moves, with
Alice going first. At each move, a player covers two adjacent unit squares by a domino.
The player who cannot find two adjacent empty squares to cover, loses. Who can force a
win, and how?
Solution.
Alice can force a win, by a strategy of "symmetry".

Games are often good competition problems, as seen in the recent 2002 Putnam paper.
Putnam problems.
A4. In Determinant Tic-Tac-Toe, player 1 enters a 1 in an empty 3-by-3 matrix. Player 0
counters with a 0 in a vacant position, and play continues in turn until the 3-by-3 matrix
is completed with five 1's and four 0's. Player 0 wins if the determinant is 0 and player 1
wins otherwise. Assuming both players pursue optimal strategies, who will win and how?
B2. Consider a polyhedron with at least five faces such that exactly three edges emerge
from each of its vertices. Two players play the following game:
Each player, in turn, signs his or her name on a previously unsigned face. The winner is
the player who first succeeds in signing three faces that share a common vertex.
Show that the player who signs first will always win by playing as well as possible.

We use another simple game to explain what we mean mathematically by a winning
strategy.
Bachet's game.



Initially, there are  checkers on the table. Two players take turn to remove at least "!! "
and at most checkers each time from the table. The last player who can remove any(
checker wins the game. Which player can force a win, and how?
Solution.
The first player can always win.
Partition the positions into two complementary sets and , where : .E F E œ Ö8 8 œ )5×
Observe:
1. Any move from a position in must end up with a position in ; andE F
2. Any position in can be moved to a position in .F E
3. The starting position  is in and the ending position is in ."!! F ! E

Finally, we mention the best-known game of Nim, the winning strategy of which was
described by C. L. Bouton (1902), R. P. Sprague (1935-36), and  P. M. Grundy (1939)
independently.
The game of Nim.
The game involves several piles of counters. On each player's turn, she selects one of the
remaining piles and removes any number ( of counters from it. The player who !Ñ
makes the last move wins.
Solution.
See, for example, [1].

2. The game of Blocking Nim

Problem 714. (CMJ Proposed by Arthur L. Holshouser, Charlotte, NC, [2002, 414-415]) 
and Harold B. Reiter, University of North Carolina, NC
The game of "Blocking Nim" proceeds in exactly the same way as ordinary Nim, except
that before a given player takes his turn, his opponent is allowed to announce a "block", i.
e., for each pile of counters, he has the option of specifying a positive number of counters
which may not be removed from that pile. Thus, when play begins,  announces aT"

block, and  takes a turn that is consistent with the announced block.  then announcesT T# #

a block, and  takes turn that is consistent with this block, and so on. The winner is theT"

one who either removes the last of the counters or who leaves the opponent unable to
remove a counter from any of the remaining piles.

Solution.
For , let  be the number of counters in the th pile and  the blocking" Ÿ 3 Ÿ 7 + 3 ,3 3

number for the th pile. Represent  in base  as 3 + # + œ + #  + #  ÞÞÞ  + #3 3 3ß8 3ß8" 3ß"
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Observe:
1. The final positions of the game are in .E



2. Any move from a position in  must make odd for some , and thus must endE W 4   "4

up with a position in .F
3. On the other hand, suppose  is a position in .: F
Case I. If has an odd  for some 1, then we always have an  and two choices of: W 4   +4 3

positive integers and  that we can remove from  to make  even for all .- -  " + W 4   "3 4

Since one of  or  must differ from , we see that  can be moved to a position in- -  " , :3

E.
Case II. If has even  for all , then there exists  such that  but . By: W 4   " 3 + œ " , Á "4 3ß! 3

removing  from  and announcing the correct blocking, we move again into a position" + :3

in .E

Further question. Proposed by S. C. Locke, Florida Atlantic University, FL
What if the block of each turn is on one pile only?

3. Sprague-Grundy function

The winning strategies mentioned above often seem "rabbit-out-of-the hat". But they are
usually discovered by painstaking endgame analysis. One useful device for such analysis
is the Sprague-Grundy function.

This is a function of the game positions, introduced by P. M. Grundy when analyzing the
game of Nim. R. P. Sprague mentioned the idea of such a function earlier.

This function  is defined recursively as follows:1
1. A "terminal" position, that is a position from which no further move is possible, has
the -value .1 !
2. For a non-terminal position , min :  can reach in one move. .: 1Ð:Ñ œ Ö ÏÖ1Ð;Ñ : ; ××!

Thus, has the following properties:1
1. No position with -value can have a follower with the same -value .1 8 1 8
2. A position with -value has some follower with any smaller -value, unless .1 8 1 8 œ !

Using this function , we can partition the game positions into two disjoint sets :1 E œ Ö:
1Ð:Ñ œ !× F œ Ö: 1Ð:Ñ  !× and : .

4. The game of Kim

We apply the Sprague-Grundy function to the analysis of a new game.

Problem 10951. (Monthly Proposed by Sung Soo Kim, University of, [2002, 569]) 
Guelph, Canada
A game starts with one stick of length  and four sticks of length . The two players" %
move alternately. A move consists of breaking a stick of length at least two into two
sticks of shorter integer length or removing sticks of length for some .8 8 8 − Ö"ß #ß $ß %×
The player who makes the last move wins. Which player can force a win, and how?



Dirty work on scratch papers.
Let be the numbers of sticks of lengths  respectively. After some+ ß + ß + ß + "ß #ß $ß %" # $ %

calculations, we obtain the following Grundy values :1Ð+ ß + ß + ß + Ñ" # $ %
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By a leap of faith, we think is periodic in and with period  and  is periodic in 1 + + $ 1 +# % "

and with period .+ #$

Now, do you see a characterization of the set : ?E œ Ö: 1Ð:Ñ œ !×
Hmmm..., yes. Denote by the residue of modulo , and by< − Ö!ß "× +  + #" $

= − Ö!ß "ß #× +  + $ E œ Ö: =  < œ !×the residue of modulo . Then : .# %

Solution.
Denote by the residue of modulo , and by the residue of< − Ö!ß "× +  + # = − Ö!ß "ß #×" $

+  + $ E =  < œ ! F# % modulo . Let  be the set of positions satisfying , and let be the
complement of .E

Clearly, each of the eight moves
+ È +  "" " ,
+ È +  ## # ,
+ È +  $$ $ ,
+ È +  %% % ,
Ð+ ß + Ñ È Ð+  #ß +  "Ñ Ð+ ß + ß + Ñ È Ð+  "ß +  "ß +  "Ñ" # " # " # $ " # $, ,
Ð+ ß + Ñ È Ð+  #ß +  "Ñ Ð+ ß + ß + Ñ È Ð+  "ß +  "ß +  "Ñ# % # % " $ % " $ %, and 
changes a zero value of  to a nonzero value, that is, any move from a position in =  < E
must end up with a position in .F

On the other hand, there is always a possible move from a position in back to aF
position in , as displayed in the table.E
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Since both the starting position and the ending positionÐ+ ß + ß + ß + Ñ œ Ð"ß !ß !ß %Ñ" # $ %

Ð!ß !ß !ß !Ñ Eare in , the second player can always force a win.

Comment.
The winning strategy works for any starting position . The winner, ofÐ+ ß + ß + ß + Ñ" # $ %

course, depends on whether this starting position is in or .E F

Further question.
What if we allow sticks of lengths ?&ß 'ß (ß ÞÞÞ

5. Further readings

For more examples to use in teaching, see
[1] D. Fomin, S. Genkin & I. Itenberg, Mathematical Circles, AMS, 1996
[2] A. Engel, , Springer, 1998Probelm-Solving Strategies

For more serious research interests, see
[3] E. R. Berlekamp, J. H. Conway & R. K. Guy, Winning Ways for Your Mathematical
Plays, Vol. 1 - 4, 2nd Ed., AK Peters, 2001 - 2002
[4] J. H. Conway, , 2nd Ed., AK Peters, 2001On Numbers and Games
[5] R. J. Nowakowski (ed.), , Cambridge, 1996Games of No Chance
[6] R. J. Nowakowski (ed.), , Cambridge, 2002More Games of No Chance


