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With the increase in knowledge in the late twentieth and early twenty-first
centuries, the question of what mathematics is has become ever more relevant.  It is now
clear that what we in the West consider mathematics has a far more diverse history and
has been practiced by a far wider group of peoples than was previously thought. As late
as the mid-1900’s, many mathematics historians thought of mathematics as a primarily
Grecian and European creation.  Also, non-literate peoples were thought to have a
primitive idea of mathematics at best, limited to perhaps simple arithmetic and counting.
Recent improvements in scholarship in the history of mathematics, along with the study
of mathematics in traditional peoples, now called ethnomathematics, have challenged
these long-held views.  We discuss these findings, and ask what impact they have on the
question not only of where and how mathematical ideas developed, but also on the
broader issue of what should be considered mathematics.

We will consider three main questions in this article.  First, where does
mathematics come from?  Second, what does the practice of mathematics look like in
non-Western societies?  And thirdly, based on the answers to the first two inquiries, we
must consider the question of what actually constitutes mathematics, and whether the
modern Western view might be too restrictive.

The Traditional View and why it needs to be revised

For most of the modern era, the commonly held view of the origins of
mathematics was that no "real" math existed until the Greeks, starting with Thales of
Miletus about 600 BC, developed the idea of demonstrative mathematics.  This centered
on the idea of proving assertions and not just using set rules to do calculations.  This idea
was passed on to later scholars, notably Euclid, Archimedes, and others.  With the fall of
the Greco-Roman Empire and the coming of the Dark Ages to Europe, mathematics, this
view held, ceased to exist for almost 1000 years.  

During this period, there were no advances in mathematical learning, although the
Arabs translated and so kept alive the results of the Greeks and Romans.  Later, scholars
and travelers brought these results to Western Europe, sparking the Renaissance and
ushering in the modern period of mathematical and scientific progress.

This view, although widespread, has recently been challenged by the work of
many mathematicians, historians and archaeologists.  Even in ancient times, Greeks such
as Herodotus acknowledged the debt of the Greek mathematicians to the Egyptians,
especially in geometry.  Also, work on Arab learning during the Middle Ages leads to
questions regarding whether it is fair to characterize their contributions as merely
translating and "keeping alive" Greek learning so that those in the West could later
uncover it.  In short, is it fair to say mathematics is a development of only the Greeks and
modern Western Europeans?  Many would now disagree.

This "Eurocentric" view of mathematics history can in part be explained, perhaps,
by the human preference for that with which we're most familiar.  Also, historians knew
little of the other cultures which have contributed so richly to mathematics before
sometime in the early to mid twentieth century.  In some cases, such as with the Chinese
and Indians, languages were not well known among scholars. In others, such as with the



ancient Babylonians, records were few and not yet deciphered.  However, even with these
caveats, enough information existed that called into question the traditional view of
mathematics history that it's surprising that so many have held to it with such tenacity.

For example, consider the origin of the "Western" system of numerals.  The
Indians originally developed a base ten positional system which was then passed on to the
Arabs.  From there, Fibonacci's Liber Abaci was the most important work in introducing
this decimal place value system to the West.  In contrast, Greek and Roman numerals
weren't place value at all, so the idea of a place value system can't be considered to be
either Grecian or European in origin.  In fact, the only cultures which independently
developed such a system were India, the Maya, Babylonia, and China. Also, once the
Indoarabic numerals were introduced in Europe, those who wished to continue the use of
Roman numerals often fought against the newer system. Of course, the number system
we now use eventually won out.  Some intellectual historians now view this change as
even more important than it might at first seem, even going so far as to suggest that only
after the Indoarabic numerals were widely accepted did Western Europe begin to
experience a true Renaissance in mathematics. 

Another very important idea in the history of mathematics is that of zero.  Again,
this concept did not come to the West via the Greeks, but rather from India.  The concept
of a symbol for zero used much as we do was even rarer than that of place value notation,
originally occurring only among the Mayans and Indians.  

Finally, though it is hard to argue that the Greeks pushed the study of geometry to
heights never before seen, they acknowledged a debt to the Egyptians.  All cultures, even
very primitive ones, have geometric concepts, and some of them are remarkably
sophisticated.  The Greeks formalized these concepts, adding the idea of proof.  For this,
it's clear all of modern mathematics owes them a great debt.  The question is, in
recognizing this are we ignoring equally remarkable contributions from other cultures? 

In answering this question, we should perhaps consider the fact that the idea of
"proof" became much more rigorous in the nineteenth and early twentieth centuries.  In
fact, it's not at all clear that many earlier proofs, even by figures considered to be among
the elite of mathematics, would hold up to modern scrutiny.  So is the modern emphasis
on rigor, especially in analyzing the history of mathematics and the exploration of
mathematics in other cultures, resulting in too narrow a perspective on mathematical
thought and its origins? 

The following two quotes, by notable historians of mathematics, are quite
revealing of the biases some have held.

“The History of mathematics cannot with any certainty be traced back to any school or
period before that of the Ionian Greeks." (Rouse Bell, 1908, p. 1)

“[Mathematics] finally secured a new grip on life in the highly congenial soil of Greece
and waxed strongly for a short period… With the decline of Greek civilization the plant
remained dormant for a thousand years…when the plant was transported to Europe
proper and once more imbedded in fertile soil.” (Kline, 1953, pp. 9-10)

It is notable that the first quote comes from a historian of the early twentieth
century, and at the time many of the findings addressed in this paper weren't known. 



However, by the time of the second quote, in Morris Kline's work on Mathematics in
Western Culture, this excuse can't be made for his bias against the mathematical works
abundant in other cultures.  In particular, the mathematical works of Egypt, Babylonia
and the Arabs were well known at that point, and Kline's failure to recognize them raises
questions about the reasons behind it. 

Many cultures, for example, did not have people whom we would consider
mathematicians at all, primarily because the ability to have scholars who devote their
lives to certain specialties implies a fair amount of wealth, so that individuals can be free
from more practical pursuits.  The ancient Greeks were fortunate enough to have this
luxury; many other cultures did and do not, though this doesn't necessarily mean they did
not have mathematical ideas worthy of note.  In particular, if one considers the scribes,
engineers, merchants and priests in ancient cultures, one will find quite a bit of advanced
mathematical thinking.  These considerations lead us to look again at the history of
mathematics in a broader light, considering cultures that have been previously neglected. 

Mathematics History – New Perspectives

If we consider the history of mathematics from a broader perspective, it is clear that
math came from many distinct sources throughout the world. For instance, the Egyptians
and Babylonians contributed a great deal to the “Greek miracle.” Also, the Indians and
Chinese had very advanced systems, many of whose ideas passed to the West.  They also
developed many mathematical concepts which are credited to Western sources, but
predate those in the West. Finally, a reexamination of the Arab contribution to
mathematics in the Middle Ages is clearly necessary for a full understanding of the origin
of many mathematical concepts.  

This paper cannot, of course, discuss all of these cultures in detail.  We will limit
ourselves to a recounting of some notable achievements of three of them, the
Babylonians, the Chinese and the Arabs.  The interested reader is encouraged to seek out
more information on these and the other cultures important in mathematics history.
George Gheverghese Joseph's book The Crest of the Peacock contains a brilliant
discussion of much of this information. In addition, there are more and more online
resources available on mathematics history, most notably The MacTutor History of
Mathematics archive, at http://www-gap.dcs.st-and.ac.uk/~history/.

One culture which had very advanced mathematical ideas, some dating back to
almost the third millennia BC, is the Babylonians.  They had a base 60 positional number
system, and have passed this on to us in our counting of minutes, seconds, and degrees in
geometric figures.  To save their scribes time, they possessed tables for many common
calculations, including computing reciprocals, squares, cubes, and exponential functions.
The latter were probably used for computations with interest, some of which are
mentioned in other tablets that have been found. 

Some of their geometrical works are particularly impressive, and it is still unclear
how these results were obtained. Two outstanding examples of their geometry are the
Plimpton 322 and Yale tablets.  



A photograph of the Plimpton 322 tablet is shown below (Figure 1).  It is a table
consisting of five columns of numbers dating from the Old Babylonian period, between
1600 ad 1850 BC.  Reproducing part of this in modern notation, we have the five
columns of numbers shown below (Figure 2). Because the tablet is partially broken, it is
unclear what all the entries are.  However, if we interpret the second row, labeled b, as
the base of a triangle, the fifth, labeled h, as the height, and the third, labeled d as the
length of the hypotenuse, we see that the numbers in these rows are Pythagorean triples. 

? b d Row # h
119 169 1 120
3367 4825 2 3456
4601 6649 3 4800

Table 1 A part of the Plimpton 322 Tablet reproduced in
modern notation.

Figure 1  Photograph  of the Plimpton Tablet.  Photo from
O'Connor and Robertson, 2000.
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Figure 2: A triangle labeled to correspond to the Plimpton 322 Tablet as reproduced
in Table 1.

Although all the numbers in the table clearly fit this explanation, how the
Babylonians got such large triples and why they would have recorded them is another
matter entirely.  One reasonable suggestion seems to be that they might have
independently derived Diaphanous' method for calculating whole number Pythagorean
triples.  That is, given two integers m and n, a Pythagorean triple is given by

2 2 2 22 , m  and mmn n n� � .
Another amazing tablet produced by the Babylonians is the Yale tablet.  This tablet

consists of a drawing of a square with its diagonals also included.  Next to one side of
the square is the Babylonian representation of our number 30.  Near the intersection of
the diagonals are the numbers we would represent as 1.41421297 and below that
42.4263891.  No explanation is given.  However, based on the geometry and how close
the number 1.41421297 is to 2  (1.41421356 to the same number of places), it is clear
that the tablet shows how to calculate the diagonal of the square by giving a value for

2 and 30 2 , which would be the length of a diagonal of a 30 by 30 square. 
 This tablet, like the Plimpton one, dates from the Old Babylonian period.  In

addition to showing that the Babylonians knew of the Pythagorean theorem, over 1000
years before Pythagoras lived, it also shows an extremely accurate approximation of

2 .  It is not at all clear how they derived this estimate, however.  I have come across
two plausible suggestions.  The first is that they had somehow developed Heron's
method, obviously well before Heron lived.  The second is that they may have used
bisection, since they had a number system that allowed for computational ease and their
other work suggests the willingness to do involved computations.  Whatever is the case,
it is amazing that an estimate of an irrational number to such a high degree of accuracy
existed so early in recorded history.

Finally, although we have focused on the geometrical work of the Babylonians,
they had a very sophisticated understanding of the solution of algebraic type problems.
Early algebra developed in three phases. First there was rhetorical algebra, characterized
by the telling of story problems with an algorithm given for solution.  Next, syncopated
algebra developed.  In this stage, phrases or terms were used to stand in for what would
later be represented as symbols such as x and y. Finally, symbolic algebra developed,
which is the way in which we represent and solve equations now.  The Babylonians did



not use symbols, but neither did any culture until the Arabs and Europeans in the second
millennia AD. Although algebraic problems were stated in the context of story
problems, such as in the rhetorical algebraic traditions, the Babylonians also used
phrases, such as length, breadth, square, area and volume to stand in for what we would
now denote symbolically as 2,  ,  ,  ,  and  .x y x xy xyz

Yet another culture whose work has far too often been overlooked is the Chinese.
The Chinese were one of only four cultures, as previously mentioned, with a place value
system.  Their rod numerals were a decimal place value system that allowed the easy
representation of any positive integer.  In addition, they had conventions whereby they
could represent decimal fractions and even negative numbers. We find references to all
of these concepts in works dating back to the period around the birth of Christ.

The Chinese excelled in both algebraic and geometric work.  A number of Chinese
mathematicians obtained increasingly accurate approximations of � using inscribed
polygons This culminated with the result of Tsu Chung Chih in c. 480 AD, which used
polygons with up to 23576 sides and the Pythagorean theorem to compute successively
better approximations to � . His result was accurate to six decimal places.

They also had developed Pascal’s triangle of binomial coefficients by about
1000AD. Chia Hsien, the mathematician responsible, recorded the triangle up to the
sixth degree coefficients. It was used in solving equations.  This development predated
Pascal’s by over 500 years.  The Chinese were hardly the only culture outside of Europe
to know of and use this triangle.  There are also references to it in India, where it was
used in combinatorics, and, as we will later see, among the Arabs. 

Perhaps the most remarkable work the Chinese produced in mathematics is the
Nine Chapters of the Mathematical Art, believed to date from the beginning of the
Christian era. This book is the first applied math text in history.  If to be considered
educated in the West required knowledge of Euclid’s Elements, the Nine Chapters was
equally important in the East.  It formed the basis of mathematical training for officials,
not only in China but also in Korea and Japan.  Some topics that were covered included
proportions, the rule of false position, finding square and cube roots, and Cramer’s rule
for solving systems of two equations in two unknowns.  There was even a treatment of
matrix methods used to solve larger systems of equatoins.  In geometry, complex areas
and volumes were treated for engineering purposes. The last chapter considered
problems using the Pythagorean theorem.  

Later Chinese mathematicians wrote commentaries on this work, explaining and
extending the results in it.  Among these were Liu Hui around 200 AD and Yang Hui in
about 1200 AD.  Unlike Euclid’s work, which has been translated numerous times into
English and other languages, there is as yet no complete English translation of the Nine
Chapters.  Given its importance in Chinese intellectual history, this omission is
amazing. 

Finally in reexamining the history of mathematics we cannot neglect to mention
briefly the amazing work of the Arabs.  To understand Arab contributions, we must
know something about the history and culture of the Islamic world.  

In 622, Muhammed went from Mecca to Medina, forced to flee because of his
preaching of a new monotheistic religion. In only ten years, in 632, he died.  However,
by then he had founded a movement which within only one hundred years claimed a
vast empire.  At its height, the Islamic movement controlled the region from Northern



Africa to the borders of China and into Northern India, and included Spain in Europe up
to the border of France. 

The two main dynasties ruling this civilization were the Abbasids, centered in Iraq,
and the Umayyads, centered in Spain.  In 762 the Abbasid caliph moved his capital to
Baghdad; his goal was to build a new Alexandria.  The next two caliphs, al-Rashid and
al-Mamun, continued this construction, building an observatory, a library and an
institute for translation and research called the House of Wisdom.  This was to be the
focal point for Arab learning for the next two hundred years.  Numerous scientists and
translators were affiliated with the House of Wisdom.  The caliphs often provided
patronage.  By "Arab" scholars, it is important to recognize that we do not just mean
Muslims or those who were of Arab ethnicity, though many did fit this description.  Any
one who was working within the Islamic world could be included, which meant, for
example, that looking at two figures we will discuss later, Omar Khayyam was Persian,
and Thabit ibn Qurra belonged to a religious sect called the Sabeans, deriving from the
Babylonian star worshippers. 

We have already touched on the role of the Arabs in the spread and development
of Indian numerals.  But they accomplished far more than that from a mathematical and
scientific perspective.  The scholars at the House of Wisdom translated many Classical
texts.  Early on they translated the Elements.  Afterward mathematicians stated and
proved theorems rigorously in imitation of this text. We consider just a few of the
notable Arab mathematicians and their achievements below. 

Perhaps the most famous and influential of the Arab mathematicians was Al-
Kwarizmi.  He lived from about 780 to 850, and came to Baghdad at the behest of Caliph
al-Mamun in about 820.  After serving as chief astronomer, the caliph made him the head
of the House of Wisdom. He produced many scientific texts, but the two most important
were Algorithmi de Numero Indorum  (the Arithmetic) and Hisab al jabr w'al-muqabala
(the Algebra). These two books had a profound effect on the history of mathematics.  The
Arithmetic described the new Indian decimal numeral system and how to compute with it.
It was translated into Latin three hundred years later and proved an important tool for
Europeans in learning the new number system.  It also is the origin of the term
"algorithm," from the Latin “digit Algorismi” or, "Thus says Al-Kwarizmi". 

Al-Kwarizmi is also fundamental in the founding of algebra, and because of his
work it became an important part of Arabic research which was later passed to the
Europeans.  The Hisab al jabr w'al-muqabala (or in English "restoration and
compensation") is where we get the term algebra.   It is an algebra text which treats
quadratic equations, geometry, linear equations, and the application of mathematics to
inheritance problems.  Al-Kwarizmi's work in algebra did not involve symbols but rather
would be classified as syncopated algebra, with words standing in for variables.  It was
not until the fourteenth century that Arabic mathematicians started to use symbols and by
the fifteenth century they had developed a truly symbolic algebra.  

Another notable mathematician was Thabit ibn Qurra, mentioned above.  He was
born about 836 in northern Mesopotamia and died in 901.  He became one of the most
important translators in Baghdad, and he established a school for translators in the Arab
capital.  He translated the Elements, works by Archimedes and several other important
Greek works.  These were translated into Latin in the twelfth century by the Europeans,
and hence helped spur the rebirth of European mathematics.  He was more than a



translator however.  His original work included a rule for discovering pairs of amicable
numbers, an attempt to prove the parallel postulate, and a proof of the Pythagorean
theorem which resembled an earlier proof found among the Chinese

The final mathematician from the Arabic world we will mention is Omar Khayyam,
perhaps best known as the poet who wrote the Rubaiyat.  However, Khayyam, who was
born about 1040, also was a gifted mathematician, particularly in the area of algebra.  In
his major work on algebra he classified equations by degree, gave rules for solving
quadratics, and used geometry to solve cubic equations.  He also, like the Chinese
mathematicians earlier mentioned, knew of and discussed Pascal’s triangle.  Finally, his
work on proportions served to extend Euclid's concept, which applied only to rational
quantities, to positive irrational numbers such as 2 . In so doing, he was one of the first
to consider a more rigorous treatment of real numbers, which was only taken up by
European mathematicians much later. 

From these few overviews, we may see that the Arabs played a much more
important role in the history of mathematics then as translators and custodians of
knowledge.  Given the current world situation, most notably the recent war in Iraq and
the terrorist attacks of 9/11, perhaps the best way to conclude this summary of Arabic
contributions to mathematics is a quote from the online MAA publication, Devlin’s
Angle, written by Keith Devlin. Quoting form the July / August, 2002 article, “The
Mathematical Legacy of Islam. ”  “... [T]he culture that these fanatics [Arab terrorists]
claim to represent when they set about trying to destroy the modern world of science and
technology was in fact the cradle in which that tradition was nurtured. As
mathematicians, we are all children of Islam.”  Whether one agrees fully with Devlin’s
analysis is open to debate, but it is clear that the Arab culture contributed significantly to
the development of mathematics and science, and that without this contribution the
modern world, and certainly modern mathematics, would look remarkably different.

Mathematics in Traditional Cultures: An Introduction to
Ethnomathematics

In addition to a reexamination of the history of mathematics, scholars are also
considering new information regarding mathematics in traditional cultures.  Most cultures
are non literate, making the study of their practices and knowledge dependent on field
work and oral traditions as opposed to written documents.  Many traditional cultures
consist of small groups which are relatively isolated, and are difficult to study due to
complications arising from lack of knowledge of the language as well as other factors.
These cultures may have extremely sophisticated ideas, but it is only recently that
anthropologists, ethnologists and mathematicians have started to analyze them. This new
field is called ethnomathematics.



One area that has been of special interest to ethnomathematics is graph theory.  The
traditional view of this discipline is that Euler originated it in the eighteenth century
while answering a question about the bridges of the town of Konigsberg.  Could a person
travel once over all seven bridges which went between the four landmasses in the town
without retracing any path?  In answering this question, Euler defined the notion of a
graph, a set of points called vertices some of which are connected to each other by curves
called edges.  Any graph which has a path such as the one described above is said to have
an Euler path; if the path ends and starts at the same vertex it has an Euler circuit.  

Other groups clearly may have situations leading to much the same questions Euler
answered. So it is perhaps not surprising that other groups have come up with diagrams
and procedures often nearly identical to those which Western mathematicians would
classify as graph theory.  One example of such a group is the Bushoong, who live in
Africa.  Among these people there is a children’s game where the goal is to trace a figure
continuously without duplicating any line, and to start and end at the same point. To us
this task would be identified as finding an Euler circuit on a graph.  The anthropologist
whom the children first challenged was unable to succeed in tracing the figure correctly.
In relating the story he did not realize that there was an advanced mathematical subject
studied by professionals which addressed the same issues.

There are other cultures in which the ideas of graph theory play an even more
important role. The Tshokwe are one such group. They live in northeast Angola and Zaire
in small villages under family chiefs.  The tracing of diagrams called sona is part of a
storytelling tradition carried on by the men.  Western mathematicians examining sona
have found that they are in fact graphs.

Among the Tshokwe these sona convey important cultural traditions.  For example,
when a young man is to pass into adulthood he and a group of other boys who are also
ready go through a series of rites called the mukanda.  After a ceremony marking their
approaching manhood, they live in a separate camp visited only by their fathers and
certain other males for one to three years.  At the end of this time, they return to the
village, receive new names and clothes and return home as adults.  There are several sona
dealing with the mukanda, most notably one which shows how the young men and their
guards, represented by dots within the graph, are inside the camp, whereas others (still
more dots) are outside and can't enter.

Another similar sona tells a tale of thieves trying to steal a dead chief's bracelet,
which is his symbol of authority and so should only be passed on to his successors.  The
thieves are again represented by dots surrounded by the rather complex graph which
signifies the village. Again, the emphasis is on the distinction between those who are on
the inside and outside of the simple closed curve which represents the village where the
chief is.  In these two sonas, we can see the Western mathematical concept of the Jordan
Curve theorem, which states that a simple closed curve in the plane divides it into two
regions, the inside and the outside.  

Yet another Tshokwe story illustrating the use of sona to emphasize the division of
the plane into regions involves a man with a gossipy wife.  He builds barriers between
her and the neighbors so that she can't gossip with them.  What is especially interesting
about this story is that there are two distinct sonas which can be drawn to illustrate it, and
in graph theoretic terms, although they appear different, they are isomorphic.  That is,
their vertices and edges may be placed in a one-to-one correspondence to each other.  



A final point about Tshokwe sona is that most of them are regular graphs of degree
four.  For a graph to be regular means that all of the vertices have the same number of
edges meeting at them, or in graph-theoretic terms the same degree. So a regular graph of
degree four has four edges meeting at every one of its vertices. The figure below shows
an example of such a graph.

Yet another traditional people for whom graphs hold an important cultural place are 

the Malekula who live in the Republic of Vanuatu, formerly known as New Hebrides, in
the South Pacific. Among the Malekula the men pass down the knowledge of how to
trace nitus from generation to generation.  Again, we would call these nitus graphs.
Also, as in the Western study of Euler circuits and paths, it is important that the tracing
of the nitus be done without going back over any path again, and that all edges be
covered. Further, it is considered so important whether one can start and end these
tracings at the same point without any backtracking that those that have this property are
given the name of suom. Of course, Western mathematicians would say that graphs
classed as suom have Euler circuits.  

The tracing of nitus is of such consequence among the Malekula that it is used in
relating important myths. One example concerns the origin of death, believed to be the
result of the killing of Barkulkul by his brother Marelul.  This story is conveyed by
means of a nitu.  Further, knowledge of how to trace nitus is considered important both in
this life and for what comes after. In order to enter the Land of the Dead, the spirit of the
Malekula is challenged to complete the tracing of a nitu.  Failure results in being eaten by
an ogre!

Finally, unlike with the graphs of the Bushoong and Tshokwe, in the case of the
Malekula we know the exact paths used to trace over one hundred figures.  They were
recorded by an ethnologist who felt that this tradition was unique and warranted further
study.  Because of this, mathematicians have been able to study the nitus and the paths
used to trace them in detail. From this analysis we know that the nitus range from simple
closed curves to graphs having more than one hundred vertices, some of degree up to
twelve.  Also, the Malekula were clearly concerned with tracing any figures which
allowed for Eulerian paths and circuits in this way if at all possible, and for the most part,
they succeeded in doing so..  Also, Marcia Ascher, a noted ethnomathematician, analyzed

Figure 3: A regular graph of
degree four.  That is, all the
vertices have four edges meeting
at them.

A

B C



the tracing procedures that the Malekula used and found that they could be explained by
what she terms a process algebra.  As she says, "The word algebra is used in its most
fundamental sense: there are variable entities that are operated upon in accordance with
specific rules. Here the variable entities are tracing procedures and the rules include
processes that transform the procedures into other procedure.".{Ascher,
Ethnomathematics, p. 51). She also found that only certain transformations were allowed,
and she used this algebraic system to actually reproduce and trace many of the Malekula
figures in the traditional way.   

Yet another area in which we see mathematical concepts emerge from traditional
cultures is in the playing and design of games of strategy and chance, and the solving of
puzzles.  Many of these are far more important in the life of the culture than similar
recreations are in the Western world.  

One example of such a game is Dish.  This is a game played by Native Americans
in many parts of North America, including the Cayuga, the Seneca, and the Cherokee.  

There are some variants in the way Dish is played, so we will consider the rules and
context of the game among the Cayuga.  This group used a set of six peach pits blackened
on one side and a wooden bowl.  The pits were tossed, and if they landed all six on the
same side (either burned or not) , the player scored five points; for five on the same side,
the player scored one point.  No points were earned for any other combinations.  Also, if
the player earned points he received an extra turn.  Otherwise he had to pass the bowl to
the opponent.  The game was played until one player reached some total number of points
such as 100.

Interestingly, if we look at the probabilities of the outcomes that occur due to the
tosses in Dish, we note that the least likely outcomes (all on the same side) receive the
most points, and the most likely the least points.  The probabilities associated with each
outcome by the binomial theorem are 1/64 for all burnt or none burnt, 6/64 for five on
one side, and 15/64 or 20/64 for four or three of a kind respectively.  As Ascher points
out in Ethnomathemaitcs, if we assume that five points is given to the least likely
combination, the number of points assigned by the Cayuga closely corresponds to the
number that would be assigned by probability if they had known this mathematical
theory. The chart below illustrates this.  If we start with a point value of five for all burnt
sides up, then all burnt sides down should be assigned the same point value since this
outcome is equally likely, and, in fact, we find that these two outcomes are both assigned
five points in the game.   According to the binomial theory, the next outcome, five up of
one type (or one up of the other type), is 1/6 as likely to occur.  Its point value should

therefore be 1 55,  or .
6 6
�  In fact the point value for this outcome in the game is the

closest integer to this, or 1.  We can compute the point values for the other outcomes
similarly.  If we do this, we get 1/3 points for four of a kind and 1/ 4  points for three of a
kind. We note that among the Cayuga these outcomes are given the closest integer value
to what we have computed which is 0 points. 



No of same
sides (burnt
or not)

6 5 4 3 2 1 0

Probability
of occurring

1/64 6/64 15/64 20/64 15/64 6/64 1/64

Point value
from
probability

5 5/6 1/3 1/ 4 1/3 5/6 5

Point value
assigned

5 1 0 0 0 1 5

Clearly, the Cayuga did not know the mathematical theory of probability, but the
correspondence between the numbers above shows that they had a very good intuitive
notion of the likelihood of the outcomes and how each should be weighted in the scoring
system of the game.

Finally, to have a fuller understanding of Dish we must explain that this game had
much more importance among the Native American cultures then we would assign to
similar games now. As one example of this, among the Iroquois a sick person might ask
for a game of Dish to be played in order to secure healing.  The whole community would
respond, with the village of the sick person inviting another village to join in.  The games
could last up to six days and sometimes went on all night.  People would bet on the
outcome using goods collected because of messages received in dreams.  Because of this,
the whole life of the village could be disrupted and people might lose large amounts of
property.  However, the belief that it was important to show support for the ill person was
paramount.  In fact, the Iroquois viewed some dreams as symbolic of a person's unspoken
desires and felt that if these desires were not expressed and attended to, illness could
result.  This understanding of the psychological underpinnings of health anticipated
theories of the mind advanced by Freud and many others by a number of centuries.   

A second example of the importance of games in other cultures is Mancala.  There
has been much written on this subject and its analysis by mathematics.  We point out, that
in addition to having complex strategic underpinnings, the game was far more than a
recreation in most African cultures.  In fact, adeptness at Mancala demonstrated the
wisdom of the chief and in some cultures a competition was even used to pick a chief. 

The final game we will examine is a logical puzzle known as the river-crossing
puzzle. Virtually identical versions are found among groups in many parts of Africa, even
though these groups are isolated from each other.  It also occurs in Europe, where the first
written form is usually attributed to Alcuin of York, who was a theologian from the late
eighth century.  However, it is also found in the folklore of the Welsh, Saxons, Russians,
Italians, and others.  It has clearly circulated in European cultures for well over a

Table 2 A probabilistic analysis of the outcomes and point
assignments in Dish.



thousand years. We have no way of knowing how long it has been in the cultural tradition
of the African groups.  

In almost all instances the structure of the puzzle is the same.  There are three
objects, for example a wolf, a goat and a cabbage.  A man must get these safely across a
river, but he has a boat which will hold only himself and one of them.   Also, clearly the
wolf can't be left alone with the goat or it will be eaten, and the goat can't be left alone
with the cabbage or it will be eaten.  There are two solutions.  Either first take across the
gaot and leave it, then come back for the cabbage, put it on the other shore and bring the
goat back.  Take across the wolf and leave it, which is safe since it and the cabbage are
now on the far side and can be left alone together.  Finally, go back and bring the goat
across.  All three are now on the same side of the river, and the puzzle is solved.  The
second solution switches the wolf and the cabbage in the above narrative.  There is also a
slightly different version of the puzzle in parts of Africa where the person can take two of
the three items with him, but does not have enough control so that they won't attack each
other in the process. Therefore he can't take the goat and the wolf on the same trip, for
example. Variants on a solution similar to that mentioned above for the first description
of the puzzle also exist for this version. 

The context in which the story is told in African cultures makes it clear that
shrewdness and logical reasoning are highly prized.  Consider the version told among the
Kpelle of Liberia.  A young man wishes to marry the king's daughter.  She agrees, but the
king sets him a puzzle which he must solve.  If he fails, the two can still marry but he will
have to pay a bride price to the king.  The king has a cheetah which has been trained to
eat any fowl it sees.  He also has several fowls and some rice.  The puzzle is to get the
cheetah, a fowl and the rice across the river in a boat which will only hold the suitor and
two of the three items.  Also, he can't control the items while on board the boat, so for
example he can't take across the cheetah and the fowl on the same trip.  The young man
tries to solve the puzzle and at first cannot.  He asks his father for help. Although the
father gives him replacements for the rice and fowls he has lost, he warns his son that he
must solve the puzzle himself or else he will be shamed and start to think ill of himself.
When the young man finally solves the puzzle, the families have a joyful celebration and
the couple is married.  The point is that the Kpelle feel that individual achievement
reflecting individual effort and cleverness is important, and this is reflected in their telling
of the story.  

A final example of the puzzle, distinct from all others found elsewhere in Africa
and Europe, occurs among the Ila of Zambia.  Instead of three items to be transported
there are four, a leopard, a goat, a rat and a basket of kafir corn.  The boat again can only
hold the man and one of these items.  It can be shown that with this change the problem
can't be solved logically while keeping all four of the items intact.  Westerners would
probably resolve the dilemma posed by sacrificing the rat.  However, this is unacceptable
to the Ila because of their ethical beliefs.  First, they believe that one may temporarily
assume the form of or pass into a plant or animal either briefly during life or at death
Also, a traveler is held responsible for his companions on a journey.  To allow anything
to happen to someone in this situation is a serious violation of Ila law.  So what is the
solution to the puzzle among the Ila?  There is no right solution other than to stay where
the person is, and not cross the river at all!



The final example of mathematical ideas in traditional cultures that we will consider
is navigation among the Caroline Islanders.  The Caroline Islands is an archipelago
extending for 1500 miles from the east to the west, that is north of New Guinea.  Many of
the islands are extremely small.  The islanders survive mainly by fishing, both in the deep
sea and among the reefs and lagoons.   Due to the fact that most of the islands are only a
foot or two above sea level, and the populations are very small because of the islands'
size, storms and illness can cause great hardship. Canoes and sailboats are the major form
of transportation.  Communication between the islands is necessary to help in
emergencies as well as for social interactions and trading.  

Sailing between the islands usually requires going out of sight of land for long
periods.  So a special group, the navigators, has arisen to undertake this dangerous task.
They have no navigational equipment, just their boats and mental spatial models.  These
enable them to conduct numerous voyages among the islands, both of the archipelagos
and even to those further away.  For example, in 1962- 63 there were fifty-seven voyages
undertaken between the three relatively close islands of Lamotrek, Elato, and Satawal.
By "close," however, we mean that Elato is fifteen miles from Lamotrek and Satwal is
more than twice that distance.  Also, the navigators have sailed as far afield as the
Marshall Islands, New Guinea and the Philippines, and they used to make an annual trip
to Guam. Just recently a navigator made a journey to Siapan in the Mariannas.  During
the course of this voyage, he was out of sight of land for 450 miles. 

The navigators are an insular group considered to hold the most prestigious
occupation among the Islanders.  Knowledge is shared freely within the group, and new
navigators come from close kin or those who are willing to pay large amounts of money
for the navigators' secrets.  The navigator class has certain customs which aid in keeping
their information secret; for example, they can only eat with each other, and all their food
must be prepared and served separately.

Looking at the modeling they use to sail successfully between the Pacific Islands,
we find that there are two separate spatial models employed.  One involves the learning
of a star compass, where the rising and setting of the stars with reference to the circle of
the heavens must be memorized.  In addition, the navigator must know the relative
locations of the islands with respect to the stars and the directions to sail from one to
another.  The other model involves the use of a reference island for each voyage that is
out of sight of both the starting point and the destination.  The boat is viewed as
stationary, with everything else moving around it as a fixed unit.  The journey is
accomplished in several stages, with the fixed boat being passed by the reference island
under a sequence of stars which the navigator must know.  The idea of the boat being
fixed and everything else moving reminds the author of modern relativity theory,
although there are differences.  What is clear is that even though this model is not truly
accurate, it allows the navigator to successfully undertake and complete long trips. 

Conclusion – New Questions and Considerations

In closing, we pose the same question asked at the beginning.  What is
mathematics?  Do we, in the modern Western world have too narrow a view of this
subject?  It is clear that at least the history of mathematics is far more global than has



been previously thought. Many Western mathematical concepts either originated in or
were independently discovered by cultures outside of the Greco-European sphere of
culture, such as the Babylonians, Chinese and Arabs.  Now that we are learning about
these other mathematical sources, it may change our view of the discipline of
mathematics as a whole. Further, in examining the mathematical ideas of traditional
cultures, we see that even societies we would have considered "primitive" in the past,
with no writing or great cities, can have very advanced notions involving space, number,
time, and pattern.   Instead of being a narrowly defined specialty practiced by a small
group as it is in our culture, perhaps mathematics is a far more intrinsic part of all
cultures then previously realized. In many cultures, certain mathematical ideas are very
important in defining core beliefs, such as the Malekula's belief about the Land of the
Dead and the tracing of nitus.  Would it be more productive (and interesting!) to view
mathematics not as a narrowly defined Western specialty, but more as a set of ideas
which can form a defining part of culture, much as language, kinship and spirituality do?
Perhaps this is so, if we broaden what we mean by "math."
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