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0. Introduction
George Pólya had three commandments for math teachers, the last of which is that they
should have a healthy regard towards problem solving. He himself followed this
commandment and made numerous contributions to the Problem Section of The
American Mathematical Monthly.
My own limited contact with problem sections of math journals convinced me the value
of problem solving in teacher's professional development and in enriching the
classrooms. In the introduction to the first issue of the , the founding editorMonthly
Benjamin F. Finkel said [ : "The solution of problems is one of the lowest forms of12]
mathematical research, ... yet its educational value cannot be overestimated. It is the
ladder by which the mind ascends into higher fields of original research and
investigation. Many dormant minds have been aroused into activity through the mastery
of a single problem."
Some of these problems often have interesting historical connections, which help to
motivate the more polished and linear presentations of texts and lectures. In this talk, we
present several examples, all of which trace back to Euler, one of the best problem
solvers of all times.

1. How fortunate are the Metropolitans

In 1735, Euler discovered the infinite product  and consequentlysinB B
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revealed that  [ ]. This celebrated Euler sum had perplexed many great!
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mathematicians in the previous century [ ]. But since Euler derived many such results3
using explicitly the arithmetic of infinite and infinitesimal quantities, he is often
portrayed in popular accounts as a reckless symbol-manipulator, who worked in a
number system fraught with nonsense and contradiction. Mckinzie and Tuckey [ ]10
recently made an interesting effort to rehabilitate Euler in the contexts of hyperreal
numbers and nonstandard analysis.
AMM 10866 [2001, 371]. Proposed by Jerry Kazdan and Herbert Wilf, University of
Pennsylvania, PA. The city of Metropolis is fortunate to have infinitely many bus
companies serving its citizens. At a certain bus stop, a bus from company arrives every3
3 3 − Ö"ß #ß $ß ÞÞÞ×# minutes, for every . A traveler arrives at the bus stop at a random time,
with no information about when any previous buses arrived. Find the expectation and
distribution of the number of minutes that the traveler waits for a bus.
Solution. Let be the number of minutes that the traveler waits for a bus, and the> JÐ>Ñ

cumulative distribution function of . Then  for> JÐ>Ñ œ "  Ð"  Ñ œ " #
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2. It's difficult enough to be perfect alone
Here, we probably should say: "In the beginning, there was Euclid...". Indeed, Euclid first
established the theorem that if  is prime then is perfect. This theorem#  " # Ð#  "Ñ: :" :

replaced one question: "finding even perfect numbers", with another: "finding primes of
the form " (Mersenne primes). The most recent discovery is the 39th Mersenne#  ":

prime  [ ]. However, it was Euler who proved that (1) an even perfect#  ""$%''*"( 8
number is necessarily of the form where  is prime [ ]. Euler also# Ð#  "Ñ #  ":" : : 6
turned his attention to the existence of odd perfect numbers and observed: "Whether ...
there are any odd perfect numbers, is a most difficult question." But he did establish a
nice fact: (2) an odd perfect number must be of the form  where  is a: 7 : œ %5  "%4" #

prime not dividing  [ ]  The usefulness of these results is illustrated in the following7 Þ6
example.
AMM 10869 [2001, 372]. Proposed by Lenny Jones, Shippensburg University, PA. Find
every positive integer such that both and are perfect numbers.8 8  " 8Ð8  "ÑÎ#
Solution. We show that  is the only solution.8 œ (
Case I. If  then cannot be perfect by (2).8 œ %5 8  "
Case II. If , then  and 8 œ %5  " 8  " œ %5 œ # Ð#  "Ñ 8Ð8  "ÑÎ# œ:" :

Ð%5  "ÑÐ#5  "Ñ Ð8ß 8  "Ñ œ " %5  " #5  ". Since , one of and  must be a perfect
square by (2). If  then , which is a%5  " œ 6 Ð6  "ÑÐ6  "Ñ œ # Ð#  "Ñ# :" :

contradiction since  is too big to be a prime factor of  or . We will#  " 6  " 6  ":

likewise reach a contradiction if is a perfect square.#5  "
Case III. If , then . So there must be a prime (mod )8 œ %5  # 8  " œ %5  $ ; ´ $ %
which has an odd exponent in the prime factorization of . The same holds true for8  "
8Ð8  "ÑÎ# Ð8ß 8  "Ñ œ " 8Ð8  "ÑÎ#, since . Hence  cannot be perfect by (2).
Case IV. If  then . Thus and  by (1).8 œ %5  $ 8  " œ #Ð#5  "Ñ 5 œ " 8 œ (

3. Platonic about polyhedra
Euler characteristic was first observed by Decartes in 1640, but without proof. It was
rediscovered and proved by Euler in 1752. Among the many consequences of this
formula is a neat way to show that there are only five regular (Platonic) solids [ ]. A2
recent problem provides another similar application.Monthly 
AMM 10856 [2001, 172].  Find all bounded convexProposed by Andrei Jorza, Romania.
polyhedra such that no three faces have the same number of edges.
Solution. Let , , and  be the sets of vertices, edges, and faces of a desired polyhedroni X Y
with , , and . Denote by  the number of edges meeting at thek k k k k ki X Yœ Z œ I œ J /@
vertex and by the number of edges enclosing the face . Then  and@ / 0 J  # œ I  Z0
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. Suppose  is even. Since no three faces have the same number of
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J  "%J  %) œ ÐJ  'ÑÐJ  )Ñ J œ ' ) J $J # . Hence or . Likewise, if is odd then 
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Hence  in this case. Notice also that , , and  in fact force all theJ œ ( J œ ' ( )



corresponding equalities to hold. Therefore , , or ÐZ ßIß JÑ œ Ð)ß "#ß 'Ñ Ð"!ß "&ß (Ñ Ð"#ß
")ß )Ñ.

PoW 4[ ]. Find all bounded convex polyhedra such that no two faces have the same
number of edges.
Answer. None. Argue as above, or with a nice application of the pigeonhole principle.

4. Triangle treats
The first systematic study of mutual relationships between well-known triangle centers
was made in 1767 by Euler [ ], who showed that the circumcenter , centroid , and7 S K
orthocenter are collinear, with dividing the segment into the ratio . ThisL K SL " À #
fundamental property of triangles had been overlooked by the thousands of geometers
who preceded him, from Euclid to Archimedes to Heron. In the century that followed,
geometry experienced a kind of renaissance, and mathematicians had uncovered many
curious new properties of the triangle [ ]. William Dunham observed [ ]: "If the Greeks9 3
gave us the Golden Age of geometry, then the century after Euler may well be regarded
as a Silver Age." Early in the nineteenth century Brianchon and Poncelet discovered the
nine-point circle whose center is at the mid point of  and whose radius is half theR SL
circumradius. A recent  problem revisited these topics.Monthly
AMM 10796 [2001, 569]. Proposed by Floor van Lamoen, The Netherlands. Let EFG
be a triangle, and let the feet of the altitudes dropped from be ,EßFßG E ßF ßGw w w

respectively. Show that the Euler lines of triangles concur at aEF G ßE FG ßE F Gw w w w w w

point on the nine-point circle of .EFG

Euler also found a number of expressions for the distances between triangle centers [ ].7
One of which is , where  is the circumradius and  is the inradius.SM œ VÐV  #<Ñ V <#

This yields Euler inequality . In the last century, geometric inequalities haveV   #<
attracted the attentions of many mathematicians [ ], [ ], among whom was Paul Erdös,1 11
another one of the best problem solvers of all times.
AMM 3740 [1937, 252-254]. From a point  inside a triangleProposed by Paul Erdös. S
EFG ST ßSUßSV perpendiculars are drawn to its sides. Prove that
SESF SG   #ÐST  SUSVÑ.
Given below are some other gems appeared recently in various problem sections.
MG 85.G [2001, 330]. From a point inside aProposed by Ho-joo Lee, South Korea. S
triangle  perpendiculars are drawn to its sides EFG ST ßSUßSV FGßGEßEF



respectively. Prove that
SE † SF SF † SG SG † SE   #ÐSE † ST  SF † SUSG † SVÑ.
MM 1620 [2001, 154]. In , let ,Proposed by Mihàly Bencze, Romania. ˜EFG + œ FG
, œ GE - œ EF 7 7 7 E F, and . Let , , and  be the length of the medians from , , and+ , -

G = œ Ð+  ,  -Ñ V ˜EFG, let , and let be the circumradius of . Prove that"
#

max .Ö+7 ß ,7 ß -7 × Ÿ =V+ , -

Crux 2662 [2001, 337]. Proposed by Christopher J. Bradley, Clifton College, UK.
Suppose that is acute angled, has inradius  and has area . Prove that˜EFG < ?

Ð E  F  GÑ ŸÈ È Ècot cot cot .#
<
?
#

Crux 2628 [2001, 214]. Proposed by Victor Oxman, University of Haifa, Israel. Four
points  are taken inside or on triangle . Prove that there exists a set of\ß] ß ^ß[ EFG
three of these points such that the area of the triangle formed by them is less than  of$Î)
the area of the given triangle.

*****
ABBREVIATIONS
AMM: The American Mathematical Monthly
Crux: Crux Mathematicorum with Mathematical Mayhem
MG: The Mathematical Gazette
MM: Mathematics Magazine
PoW:  at Polk Community CollegeProblem of the Week

REFERENCES
[1] Oene Bottema, et al., , Wolters-Noordhoff, 1969.Geometric Inequalities
[2] Edward B. Burger and Michael Starbird, , Springer, 2000.The Heart of Mathematics
[3] William Dunham, , MAA, 1999.Euler: The Master of Us All
[4] Arthur Engel, , Springer, 1998.Problem-Solving Strategies
[5] Leonhard Euler, translated from Latin by J. D. Blanton, Introduction to Analysis of
the Infinite, Book I, Springer, 1988.
[6] Leonhard Euler, , 5 (1944), 353-365.Opera Omnia I
[7] Leonhard Euler, , 26 (1953), 139-157.Opera Omnia I
[8] , 22.2 (2002), 13.Focus: The Newsletter of MAA
[9] Ross Honsberger, Episodes in the Nineteenth and Twentieth Century Euclidean
Geometry, MAA, 1995.
[10] Mark McKinzie and Curtis Tuckey, Higher trigonometry, hyperreal numbers, and
Euler's analysis of infinities, , 74 (2002), 339-368.Mathematics Magazine
[11] Dragoslav S. Mitrinovic, et al., , Kluwer,Recent Advances in Geometric Inequalities
1989.
[12] C. W. Trigg, The MONTHLY problem departments, 1894-1954, The American
Mathematical Monthly, 64 (1957), 3-8.


