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Abstract. We use a shel ling procedure to construct a semi-automated sphere
packing treatment plan for brain tumors. We develop a new code to denote an
unlabeled tree, and we use it to obtain a complete classi… cation of unlabeled
n-trees. We also produce a Mathematica program to list for each n; all perfect
sequences corresponding to n-trees, as well as their graphs. We then develop
an algorithm and a program to analyze the brain tumor shapes using trees and
perfect sequences.

I. An Automated Sphere Packing Plan for Brain Tumors

The goal of stereotactic radiosurgery for a brain tumor is to deliver the desired
dosage to the target, and only the target. This is not possible in reality. So they
do the next best thing, which is to deliver enough dosage to the target, to avoid
as much normal tissue as possible, and to deliver as little radiation as possible
to whatever normal tissue must be a¤ected. There are two additional important
criteria–dose homogeneity and dose conformality. That is, we do not want ‘hot
spots,’which have been experimentally determined to cause complications; and we
do want rapid fallo¤ of dose levels outside the actual tumor. One of several such
radiation surgery methods is called the ‘Multiple Isocenter Method.’ This involves
…lling the tumor image with spheres of di¤erent sizes, until the image is best …lled
up. This noninvasive method of surgery, namely by using radiation, relies on a
piece of equipment called the Linear Accelerator (or simply, Linac). Most of the
information in this section about treatment of a brain tumor is taken from Friedman
et al.[4]. See [4] for further reference.

1. Making a Sphere by Arcs of Beams
According to [4], the linear accelerator is a complex machine capable of producing

X-rays. A large amount of energy is generated by the power supply, which then
powers the …lament shown. This causes electrons to be emitted by the …lament,
which are in turn accelerated to higher energies using a (micro-)wave guide. The
electrons are then changed in direction by the magnet so that they impact on
a heavy metal alloy target. This results in X-ray production that can then be
collimated or shaped by both primary and secondary collimators within the linear
accelerator head. This beam is further collimated for radiosurgery by the tertiary
radiosurgery collimator.

The Linac is mounted on a rotating gantry such that the beam has a center
of rotation about 1.5m above the ‡oor. Usually, the isocenter accuracy is de…ned
within a 2mm sphere. Because stereotactic radiosurgery depends on optimized
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accuracy, an improved system was designed at the University of Florida, by adding
a set of bearings to the stereotactic collimator system and under the patient table.
As a result, this new system achieves mechanical accuracy within 0.2mm§ 0.1mm
for de…ning the treatment isocenter of beam delivery.

The tertiary collimators are generally circular and allow improved centering of
the treatment beam. The sizes of these collimators are from 5 to 40mm in 2- to
5-mm increments.

By varying the angle of the gantry and the angle of the table, one can deliver a
radiation beam to the target from any angle within the range of the rotation. The
shape of the common intersection of an arc of beams passing through one isocenter
is a sphere. The neurosurgeons deliver a series of arcs (usually 5 or 9 arcs) to
produce a single isocentered sphere shape. For an ellipsoidal target, they use fewer
numbers of arcs to make a single isocentered ellipsoid shape.

So, if the target shape is very close to a sphere or an ellipsoid, then the treatment
plan is relatively easy compared to an irregularly shaped target. In that case, we
need to create a geometric treatment plan.

2. Sphere Packing Plan
As seen in the previous subsection, the physicians know how to irradiate-to-

destroy tumors which are shaped like spheres or ellipsoids. For a non-spherical
shape of tumor, they try to …ll the target with several spheres of di¤erent sizes.
This is called the ‘sphere packing’ treatment plan.

After …nding a sphere packing plan, they treat each sphere separately as de-
scribed in the previous subsection. So, multiple isocenter radiosurgery planning
includes the problem of determining the best sphere packing arrangement with
which to …ll the target volume. General methods for this treatment plan are iter-
atively based, dosimetrically driven algorithms. But these methods require many
computations in order to compute a radiosurgical plan dose distribution, and then
to evaluate the quality of the dose distribution. So geometrically based radiosurgery
optimization has been suggested as a possible alternative means.

However the method the physicians choose relies on human decisions and expe-
rience. Thus, for the same target, di¤erent surgeons may produce di¤erent plans.
Even the same surgeon, doing the plan twice for the same target, may produce
di¤erent plans. And the planning takes a long time, especially for a complicated
target which needs more than 10 spheres. It might take as much as two hours of
planning for a di¢ cult case which needs about 20 spheres. During that time, the
patient has to wait with the head ring attached to his or her head. And most
importantly, even after spending the time to make a plan, many physicians without
su¢ cient experience, are not sure if the plan is a ‘good’one.

Therefore, we provide a semi-automated sphere packing method for the treat-
ment plan (see [19]). This method shows potential to signi…cantly aid the planning
of di¢ cult multiple isocenter cases. Based on tests with irregularly shaped phantom
targets and with a representative sampling of clinical example cases, the method
demonstrates the ability to generate radiosurgery plans comparable to, or of better
quality than, multiple isocenter Linac radiosurgery plans found in other literature.
At the same time, this program always produces the same treatment plan for the
same tumor shape. So it can be used as a ‘benchmark’to compare with other plans
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Figure I-1. Plan for a sphere shape and an ellipsoidal shape ([4])

for the given tumor shape. Moreover, this program provides the treatment plan in
a relatively short time. For a very di¢ cult case which needed more than 18 spheres,
this program took less than 3 minutes instead of more than the 1:5 hours which
were needed when the physicians created the plan using traditional methods.

In the following subsection, we explain the ‘shelling procedure’which we used in
this program to get the centers and sizes of spheres for the sphere packing plan.

3. Shelling Procedure
The shelling procedure is best illustrated in Figure I-2 to I-10. The major steps

of this shelling procedure are as follows.
Step 1 Transfer the data of the boundary of the target to the three dimen-

sional array and assign a status value for each voxel. (See Figure I-2 and I-3).
Step 2 Shell the target voxels (See Figure I-4).
We program a prodecure to count the number of layers of the largest sphere(s),

and identify the deepest voxel(s). Occasionaly, several voxels remain at the deepest
level. When this occurs, the score function is requested which is derived by Thomas
Wagner. (see [19])

Step 3 Remove the largest sphere (as chosen by the score function, if use)
We think of the largest radius sphere as being removed, and repeat the process

inductively. (See Figures I-5 to I-10.)
For further detailed information about the score function and the automated

sphere packing plan, we refer the reader to [18] and [19].
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Figure I-2. Status values for the boundary and the initial voxel

Figure I-3. Status values for the normal voxels

Figure I-4. Shelling the target voxels
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Figure I-5. Choosing the largest sphere

Figure I-6. Removing the largest sphere

Figure I-7. Shelling the remaining target voxels
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Figure I-8. Choosing the largest sphere of the remaining target

Figure I-9. Removing the second sphere

Figure I-10. Removing all the spheres
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Figure I-11. A sphere packing plan for a brain tumor ([19])
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II. A Classi…cation of Unlabeled Trees

In this section, we obtain a new code to denote an unlabeled tree. By means
of this code, we classify unlabeled n-trees. In particular, we call a tree an n-tree if
and only if it is a tree with n vertices (that is, (n ¡ 1) edges). Our code assigns
a unique, ordered, ‘perfect sequence’, pf (T) = hd1; d2; : : : ; dni ; to each unlabeled
n-tree, T: And, conversely, given an ordered sequence of n integers satisfying certain
properties, it is the perfect sequence of exactly one unlabeled n-tree.

Our work includes an algorithm and a Mathematica program that produce a list
of all the perfect sequences for all possible n-trees, thus also producing the number
of n-trees, for any given n. Some examples are given below.

However, we do not have a simple formula that tells us how many unlabeled
n-trees there are. This remains an open problem.

1. Perfect Sequence for a Tree
Let T be the unlabeled tree below, but we labeled the vertices of T as shown to

construct a degree sequence.
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Figure II-5

For the chosen vertex sequence V = hv1; v2; :::; v13i ; we can get the degree
sequence, D = h3; 2; 3; 1; 0; 0; 0;1; 0; 2; 0; 0; 0i :

(a) Let D = h3; 2; 3; 1; 0; 0; 0; 1;0; 2; 0; 0; 0i = hd1; d2; :::; d13i : Then di equals
(the degree of vi) - 1, except the …rst term in which d1 = the degree of v1:

Clearly,
P13

i=1 di = 12; which is the number of edges in T.
(b) Every pair of consecutive terms in the sequence are connected in T except for

the end vertices. We choose one of the closest vertices to the end vertex, that is not
selected yet in the sequence. For example, since the vertex v5 is an end vertex, we
don’t have any remaining unselected vertex connected to v5: Then there are two
(closest to v5;) unselected vertices, v6 and v7: We could choose either of them
for the next term after v5:
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We showed that, for a given tree T; there exist many vertex sequences, therefore
degree sequences, depending on the starting vertex and choice among the adjacent
vertices for each successive vertex. Therefore the degree sequence set D for the
given tree T contains many di¤erent degree sequences which denote the same tree
T: We need a way to choose one degree sequence representing the tree T: So we
de…ne an order on the set of all …nite, nonnegative, integer sequences, and then we
de…ne a perfect sequence to be the unique maximum element under this order.

Theorem 1 [Tree Classi…cation Theorem] For any positive integer n; let T (n)
be the set of unlabeled n-trees and P (n) the set of perfect sequences of length n.
Then there is a one-to-one correspondence between T (n) and P (n):

2. Some Program Results

Our notation for a degree sequence is hd1;d2; : : : ; dni : But the Mathematica
program produces the sequence notation with f and g: So in this subsection,
any set notation actually denotes the degree sequence. Note that an n-tree has n
vertices, so there are n-1 edges.

n=3 total number of degree sequences : 1
{2, 0, 0}

n=4 total number of degree sequences : 2
{3, 0, 0, 0}, {2, 1, 0, 0}

n=5 total number of degree sequences : 3
{4, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {2, 1, 1, 0, 0}

n=6 total number of degree sequences : 6
{5, 0, 0, 0, 0, 0}, {4, 1, 0, 0, 0, 0}, {3, 2, 0, 0, 0, 0},
{3, 1, 0, 1, 0, 0}, {3, 1, 1, 0, 0, 0}, {2, 1, 1, 1, 0, 0}
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III. A Tree for a Brain Tumor

In section I, an automated sphere packing treatment plan for a given brain tumor
is developed.

From that plan, we can assign a unique corresponding graph by matching a
sphere with a vertex and matching the adjacency of two spheres with an edge.
Then, by using the notion of cutvertex (a separating vertex), we give an order to
the vertex set. We use this order to decide which edges to choose in order to obtain
a unique maximal tree contained in the graph. We assume that a brain tumor is
connected, so the graph representation for any brain tumor is a connected graph.

1. Cutvertex and Block
Let G be a graph with 14 vertices and 18 edges as in the Figure III-1 below.
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Figure III-1

There are 3 cutvertices, b; c; e: So the given graph G can be separated into 6
blocks as follows:
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Figure III-2

2. Order in the Vertex Set
To get a maximal tree from a graph we may need to delete some edges in the

graph. Thus we need to label each vertex in order to choose certain edges to delete,
even though we are dealing with an unlabeled graph in this article. So there is no
speci…c meaning for this labeling except that it is only used to choose a maximal
tree for the graph.

Example III-1. Let P be the sphere packing treatment plan (see Figure III-
3) for a given brain tumor, shown below.

&%
'$µ ´
¶ ³

µ ´
¶ ³

m
Figure III-3

Then there is a unique graph G for the sphere packing plan. The graph is given
below in Figure III-4. rp r s

rq r r¡
¡
¡
¡

Figure III-4

There are two di¤erent isomorphism classes, namely T1 and T2; of maximal trees
for the graph G: That is, we could choose either of these for a maximal tree to
assign the graph G: Since, in our algorithm, we want to get the same maximal
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tree for a given graph every time, we need certain rules to get the same tree. (See
Figure III-5.) r r

r r¡
¡
¡
¡

T1

r r
r r

T2

Figure III-5
In this section, we assume that the graph comes from a sphere packing treatment

plan. That is, the main shape of the brain tumor depends on the size of spheres
and the connection between spheres. Even though we cannot keep the information
about the size of spheres in the graph, it seems to us that the bigger the sphere is,
the more it has a chance to get attached to more spheres. And we assume that the
larger degree vertices play a more important role in classifying the tumor shapes
into trees than the smaller degree vertices. That is, by choosing a largest degree
vertex …rst, the shape of the tumor is apparently most closely preserved. Thus, in
the previous example, we choose the vertex q or s as the starting vertex; then we
pick all the incident edges (see Figure III-4). Then we get the tree T1: Therefore
we want to choose the tree T1 for the maximal tree of G: Note that the tree T2

produces a linear graph which does not show the shape of the tumor as closely as
T1:

But there are some vertices which are more important than the larger degree
vertices. Recall the graph G in the subsection III-1. Then, in the block G2; it
is clear that the vertex k has the largest degree, 5. But the cutvertices, b and
c; play a critical role in obtaining a maximal tree of G: So, to get a maximal
tree for a graph G; we want to start at the cutvertices of G …rst, instead of the
vertices with the largest degree. So we want to label the cutvertices …rst. On the
other hand, there are di¤erent kinds of ‘cutvertices’ in some graphs. The following
example shows such a case.

Example III-2 Let G = fV; Eg be the graph in Figure III-6.
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Then there are two cutvertices of the graph G; namely u2 and u10: Using
these two cutvertices, the graph G is separated into four subgraphs, namely G1; G2;
G3 and G4: (See Figure III-7.)
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Figure III-7

Then the subgraphs G1; G2; and G3 are blocks, but the subgraph G4 con-
tains its own cutvertices, u4 and u8; which are not cutvertices of the graph G:
We separate the subgraph G4 into four subgraphs by using its cutvertices u4 and
u8: (See Figure III-8.) Note that there is no speci…c order in labeling the subgraphs.
So at this moment, we relabel the subgraphs of G by H1; H2; : : : ; H7:
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Figure III-8

Then, again, the subgraphs H1; H2; : : : ; H6 are blocks, but the subgraph
H7 contains its own cutvertex, u6; which is neither a cutvertex of the graph G
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nor a cutvertex of the subgraph G4: We separate this subgraph H7 into two
subgraphs by using u6: (See Figure III-9.) And we relabel the subgraphs of G by
B1; B2; : : : ; B8:

Therefore fu2; u10g is the set of cutvertices of the graph G: But fu4;u8g is
the set of the cutvertices of a subgraph which is produced after the …rst separation
using the cutvertices of the graph, and u6 is the cutvertex of a subgraph which is
produced after the second separation.

For the purpose of labeling the vertices in a graph, we separate these cutvertex
sets for di¤erent levels, from each other.

Let G be the graph assigned for a given sphere packing plan P: Then the vertex
set V (G) of the graph G is the union of two disjoint subsets, namely C1(G)
and C c

1(G); where C1(G) = fv 2 V (G)j v is a cutvertex of Gg and Cc
1 (G) =

V (G) ¡ C1(G): We call C1(G) the …rst step cutvertex set of G: For every i =
2;3; : : : ; jV (G)j; we de…ne a subset Ci(G) of Cc

i¡ 1(G) as the collection of the
vertices of C c

i¡ 1(G); which are cutvertices of a subgraph produced after the (i¡ 1)-
th separation using the elements of Ci¡ 1(G): Then we call Ci(G) the i-th step
cutvertex set of G; and let Cc

i (G) = Cc
i¡ 1(G) ¡ Ci(G): We assume that there are

…nitely many vertices in a given graph. If there exists at least one cutvertex, then
there exists an integer 1 · k · n such that Ci(G) 6= ; for every i · k; and
Ci(G) = ; for every i ¸ k + 1: Then we call k the separation step constant of
the graph G; and let Cc(G) = (Ck)

c(G):
If there is no cutvertex of G then the graph is a block, and we say that the

separation step constant of G is 0.
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It is clear that for any two di¤erent spheres, at least one of the center coordinates
is di¤erent. Thus any two distinct spheres can always be compared by the above
order. Therefore the above order for the vertices of the graph is well de…ned.

3. Maximal Tree from a Graph
In this section, we illustrate, by means of an example, how to select a unique

maximal tree from the graph which is produced for a given brain tumor by using
an example. For the detailed algorithm, refer to [23].

Example III-3 Let G be the graph in Figure III-1, with a new labeling.
Then C1(G) = fb; c; eg and Cc

1 (G) = fa;d; f; g; h; i; j;k; l; m;ng: In C1(G); we
have that d(e) = 5; d(b) = 4 and d(c) = 3: On the other hand, in C c

1(G); we
have that d(k) = 5; d(m) = d(n) = 3; d(d) = d(f ) = d(g) = d(h) = d(l) =
2; d(a) = d(i) = d(j) = 1: And C2 = ;: Thus we order the vertices as follows;
v1 = e; v2 = b; v3 = c and v4 = k; fv5; v6g = fm; ng; fv7; v8; v9; v10; v11g =
fd; f ;g; h; lg; fv12; v13;v14g = fa; i; jg: Assume that v5 = m; v6 = n; v7 = d; v8 =
f; v9 = g; v10 = h; v11 = l; v12 = a; v13 = i; v14 = j; which are decided by the
sizes and centers of the corresponding spheres. (See Figure III-16.)
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Figure III-16

For the cutvertex v1; we keep the 5 edges attached to v1: (See Figure III-17.)
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Figure III-17

Since v2 is not adjacent to the vertex v1; we keep all the edges attached to v2:
(See Figure III-18.)
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Figure III-18

Since v3 is an adjacent vertices of v2; the edge fv3; v4g makes a circular form.
Thus we keep the edge fv3; v7g only. (See Figure III-19.)
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Figure III-19

For the vertex v4; by the same reasoning, we keep only 2 edges, fv4; v5g and
fv4; v11g: (See Figure III-20.)
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Figure III-20

For the vertices v5; v6; v7; v8;v9; there is no ‘new’ edge. For the vertex v10; we
could keep the edge fv10;v13g: At this moment, the total number of edges in this
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tree is 13 which is one less of the number of vertices. Therefore we have a maximal
tree for the given graph. (See Figure III-21.)
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Figure III-21

For this resulting tree T; we choose the vertex sequence
hv1; v7; v3; v2; v4; v5;v11; v6; v12; v10; v13; v8;v9; v14i :

Then P = h5; 1; 1; 3; 2; 0; 0;0; 0; 1; 0; 0; 0; 0i is the perfect degree sequence of T:
If we are interested only in the shape of a brain tumor, without regard to physical

consequences (for example, location near an eye or the brain stem, etc), then we
can fully automate our program from section I, to obtain a unique tree.

For any brain tumor, we have a unique sphere packing plan by the automated
program in [21] and [22], and it can be represented by a graph. Then we have a
unique perfect sequence for the graph. That is, we can assign exactly one perfect
sequence to each brain tumor. So, if two perfect sequences are distinct, then their
corresponding trees, and therefore their respective corresponding graphs and sphere
packings, are also distinct. That is, if two tumors are represented by distinct perfect
sequences, then their corresponding trees are not isomorphic. And their respective
graphs and sphere packing plans are not isomorphic. Thus, we may consider their
shapes to be distinct. Therefore we have the following:

Theorem 2 The perfect sequences are invariants of the shapes of arbitrary
brain tumors.

This work is a summary of the author’s dissertation, under the direction of Bev-
erly L. Brechner. Various parts of this work were in collaboration with di¤erent
subgroups of the following people: Beverly L. Brechner, Frank Bova, Yen Chen,
Mattew Harvey, Tomas Wagner, as well as additional faculty from the Brain In-
stitute at University of Florida. This work is motivated by questions radised by
Dr. Frank Bova of the McKnight Brain Institute at the University of Florida. Dr.
Bova led a joint medical and mathematics research group, which included all of the
mentioned people above. For more detailed results see references [19], [21], [22],
[23], [24].
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