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|. Introduction and Notation

It is the purpose of this paper to explore avariant of Pasca’ striangle. This variant has the

rule that every entry, denoted as a,  , where a, , =1, iscaculated in away such that

lgl
an,k = a. a'n-i,k-i +
i=1 i

1

Y=}

Qyo-

a,, - Thismeansthat when these numbers are put into atriangular

k

formation, every number is the sum of dl the numbers above it in itstwo diagonas. The
beginning of the triangle looks like the fallowing:
1
11
2 2 2
4 5 5 4
8 1214 12 8
16 28 37 37 28 16

For example, 14=2+5+5+ 2.

Therowsof the triangle will begin at =1 and work down the triangle in increments of 1.
The columns of the triangle point southwest (60° from horizontal) and will begin a k=1, and
proceed in increments of 1. For example, we would say that the leftmost number 12 would bein
row 5 and in column 2. The anticolumns are the columns of the triangle pointing southeast that
begin at k'=1, and proceed in increments of 1 moving diagonaly from right to left. So, for
example, the rightmost number 12 would bein row 5 and in anticolumn 2. Finaly, Shallow

diagonals point southwest (30° from horizonta). For example, the third shdlow diagona

conggsof thedements a,,=2and a, ,= 1.



1. Basic Lemmas & Theorems

Some interesting discoveries found within this triangle will now be discussed, and

proved, alot of which is done through induction. We begin with perhaps the most obvious

result.
Theorem: Thetriangleissymmetrica (i.e: a,, = a, 0. )-

Proof: (By Induction) For n=3andk=1, a;, =2=a,,, = @,,. Now asumethat a,, =

) Igl r})—l B rsk ndl
a'n,n+1—k for some n. Thm we can write a. an—i,k—i + a. a'i,k - a a'n—i,n+1— k-i + a'i,n+1—k by
i=1 i=k i=1 i=n+1-k
5 s 'y 5"
definition. Further, @ @i i " @ @ik T A AT A = A ez iniewi T Qnnak -
i=1 i=1 i=k i=1
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n-1 n -
A amk * @ &, bytheinducion hypothess Thisisthesameas § a,., . +
i=1

i=n+l- k i=n+2- k

n n+l- k n

] o o) . . .
a ai,k = a a'n+1— i,n+2-k-i + a a1’,n+2— k WhICh means an+1,k = an+1,n+2— k* Hmce’ by IndUCtlon,
i=k i=1 i=n+2- k

we conclude that the triangle is symmetrica.

We now develop some recursive and explicit formulas for caculating entries in the firdt three

columns of thetriangle. The first formula calculates the entries in the first column.

Lemma: a,, =2a,,, forn®3.

n-1,1

2

n-1 n-
Proof: By defirition, a,, = @ &,= a,,,+ &
.:l ‘_

n-2
. o

ai,l: an—Ll + an»l,l’ snce an—l,l = a ai,lby
i=l i=l

definition. Hence, a,,, =2a,_,, forn® 3.



An explicit formulafor entriesin the first column is now given.

Theorem: a,, = 2" 7 forn? 2

Proof: Sncea,, =2a,,,, thenthetheory of difference equationsimpliesa,, =C 2",

Solving for Cwhen a,, = 4. Weget C = pvhichmeans a,, = 2" forn? 2.

The fallowing lemmais given to cdculate the entries in the second column, and the next theorem

is the corresponding explicit formula.

Lemma: a,,,,=2a,,+ 2"° forn3 3.

n n-2 n
Proof: Weknow a,,,,= a,,+ 601 & , by définition. Further, a,,= a,,,+ é 8, and é_ a,
i=2 i=l i=2
' b2 . 52
= a‘n,2+ a. ai,z ' ThUS, a‘n+1,2: an—l,l + a‘n,2 + a ai,l + a a|2 BUt' a ai,l = an—l,l' SO’
i=2 i=1 i=2 i=1
- 2 rgl
aa,+a a,= a,, byddinton whichimplies a,,, ,= a,,, +28a,,. Therefore, by
i=1 i=2

Theorem 1, a,,,,=2a,,+ 2" forn? 3.

Theorem: a,,=(n+1) 2" * forn? 4.
Proof: Thetheory of difference equationsimplies &, , = (A + Bn)( 2" 4). Solving for A and B

when a,,=2and a,, =5, weget A=B=1. So, a,,=(n+1) 2m 4,

Note: A different proof can be found in the appendix.



Findly, arecursive formulaand corresponding explicit formulais given to caculate the entries
in the third column, after which there does not appear to be asmple formulafor caculaing

entries.

Lemma: a ,=2a,,,+a

n-1,

22t A, for n3 4.

n-

2 n-1 n-1

. e [o] []
PrOOf: Byddlnltlon’ an,S = aan 1,31 + aa|3: an 1,2 + an 21 + aa|3 :2an 2,2 + a'n 31+
i=1 i=3 i=3
n-2 r})z
an2:L+a'n13+aa'|3_an22+an21+a’n-1,3+ar131+a'n22+a.a'l3 BUt’anlS_
i=3 i=3

2 - n-2

[} o o . ey
a. an»i,?ri + a a‘i,3 = a'n—3,1 + an» 2,2 + a. a'i,3 bydd|n|t|0n. ThUS, a‘n,3 = an— 2,2 + an- 2,1 + a'n—1,3
i i=3

I
ALY
n
w

PR NP for n3 4.

Theorem: a,,=(- 4+7n+n?)2"" forn3 4.
Proof: Thetheory of difference equationsimplies a, , = C(2"") + Dn(2" ") + Enf(2"7).
Solving for C, D, and Ewhen a,,=5, a,,=14,and a;,= 37, weget C=-4,D=7,and E= 1,

whichgives a, ,= (- 4+7n+n?)2"",

Note: A different proof can be found in the gppendix.



[11. Other Lemmas & Theorems

These lemmas and theorems explain the behavior in the rows and shdlow diagonas of
thevariant. Let S, denote the sum of the entriesin the i row, and D, denote the sum of the

entriesin the i shalow diagond.

Lemma: S, =2S ,+2S,,+2S, ,+..+2S forn32
Proof: Choose an arbitrary element a, , . Consider the " row, wheren >r. Then a,  will
gppear intheformulafor finding a,,, becauseit isin the same column. Futher, a, , will appear

in the formulafor finding a because of thefact that a, , isinitsanticolumn. Hence, the

nk+n-r

arbitrary dlement a, |, issummed exactly twiceintherow nfor 1Er£n-1. And o, the sum of

the dementsin row n would be equa to twice the sum of the dementsin al previous rows.

Therefore, we canwrite S,=2S, , +2S,, +2S , + ...+ 2S5 fornd 2.

Lemma S =3S_, forn3 3.
Proof: Itcanbeshownthat S, =2S ,+ S, ,,ardsnce S, ,=2S, , +2S ,+...+2S. This

means S,=3S, ;.

The next theorem provides an explicit formulafor calculating the sum of the entriesin any given

row.



Theorem: S,=(2/9) 3" forn3 2where S=1and S,=2.
Proof: From the theory of difference equationsand lemma4, S,=C+ D3". Since S,=2and
S,=6, solving for Cand D, weget C=0and D = (2/9). Thus, S,=(2/9) 3".

Note: A different proof can be found in the appendix.

The following theorem can be used to caculate any given entry in the triangle, and is used to

prove the next couple theorems.

Theorem: a,, =2a,,., +2a,,, —3a, ,., forn3 3.

_ S S 62 5 2 _ :
Proof: Weknow a, = a A ki ta Qs Qg T a A g k1 ta Qi1 Ay =
i=1 i=k i=1 i=k-1
Igl n: 2 k62 %—3 Igl
a A gk +a a,, and Ay oK1 — a Ao ikt ta a1 - o, = - T + Ak +
i=1 i=k i=1 i=k-1 i=2
n-2 k-1 n-2
- d = + 3 + 3 Therefor =
a1k ta a,anda, =a, a A ik a a; - erefore, a, - a, 1 = A, qx.1
i=k i=2 i=k
k-1 k-1
[ [
+ an—l,k+ a an-i,k-i - an—2,k—1 - a an—l—i,k—i : SO’
i=2 i=2
k-1 k-1
_ o} o}
an,k - an-l,k-l + Zan—l,k - a, 2,k-1 + a an-i,k-i -a an—l—i,k—i :
i=2 i=2
Igl n°-3
Further, an,k' an-l,k-l = an-l,k-l + 2an-1,k - 2an- 2k-1 ~ a an—l—i,k-i - a ai,k-l' o,
i=2 i=k-1
Igl n63
an,k: 2an-1,k-1 + 2an-1,k - 2an- 2k-1° a an-l—i,k-i -a ai,k-l'
i=2 i=k-1

Also, A T Ay 01 =28, 4y, Y28, -2a,,,,- Hence, a,, =23, , +23,,, - 33, ;-

With the next two theorems, we are able to caculate the sum of the entries in shallow diagonds.



Theorem: D,=2D,, +2D,, -3D,, forn35.
Proof: Weknow a,, =2a,,,, +2a,,, -3a,,,, forn® 2. Ifwelet a,, beinD,,then

Q,.14., 1sinD_,; &, ,, isinD_,;anda,,,,isinD, ;. Condder a, ,, an abitrary ement in

é/20 620 &/20 620 .
D,. Ifweletr=n+l-k,then g @8,..,«=2Q A1 2 A Ak -3 A Aryarier- IS
k=1 k=1 k=1 k=1

important to note that in some of the summations there may exist termsintheform a, jor a, |, .

These terms are actudly equd to zero and hence do not affect thesum. Thus, D, =2D, , +

2D, , -3D, . .

Theorem: D,=D, , +3D,, forns 4.

Proof: (By Induction) Forn=4, D,=4+2= D, +3D,. Nowassume D,= D, , +3D,, for
somen. Also, recdl D,=2D,, +2D,, -3D, ,. So, D,,,=2D, +2D,, -3D,. ,=
b,+b,+2D,,-3D,,=D,+2D,,+D, ,+3D, ,-3D,. , by theinduction hypothess.

Thus, D,,,= D, +3D,_,. Hence, by induction, we conclude D, = D, , +3D,_,.



V. The TriangleMod 2 and 3

After examining the properties of the variant, we decided to explore the triangle mod 2
and 3, snce Pascd’ s Triangle contained some interesting propertiesinitstriangle mod 2 and 3.
While Pascd’ s Triangle mod 2 displays a fracta structure, our variant does not, but it does
display some intriguing patternsmod 3. A picture of the triangle mod 3, as well asthe
mentioned fractal patterns can be seen in the colored triangle mod 3 on the next two pages. The

following theorem tells us that the triangle mod 2 does not display any fracta structure.

Theorem:  Theonly odd numbersin thetriangle are a, , and entries of theform a,,  and

a,,.1- Theseare consecutive numbersin the middle of every even numbered

row.

Proof: (By induction on rows) Consder row 4. We seethat row 3 has only even entries. Also,
a,,and a,, arecomposed of 1+1+2+4 = 8, which iseven. Further, a, , and a, , are composed
of 1+2+2 =5, whichisodd. So, a,, and a, ; arethe only odd entriesin row 4, and arein the

center of thetriangle. Thus, the hypothesisistrue for row 3 and row 4. Now assume for some

row r that dl rows before and including it behave in the hypothes zed fashion. Consder rows

r+landr+2. Recdlthat a,, =2a, .., +2a,,, —33,,,,; S0, a,, willbeevenif a,, °0
(mod 2). Thus, forrowr+l, a,,,, =2a,,, +2a,, -3a_,,,. Buta_,, , isevenfordl entries
inrow r-1 by theinduction hypothesis, therefore a, ,, , = 0+0-0=0(mod 2). Hence, dl entriesin
row r+1 are even. For row r+2 weknow that a, . , will be even except for the two consecutive

entriesin the middle of the row. Thismeansthat dl entriesin row r+2 will be even except for



{1}
{1, 1}
{2, 2, 2}
tl, 2,2, 1}
{z, 0,2, 0,2}

{1, 1,1,1,1,1}
{2,1,1,1,1,1, 2}
{1,0,1,1,1,1,0,1}
{2,2,2,1,1,1, 2,2, 2}

{1, 2,2,0,1,1,0,2,2,1}
{2,0,2,1,2,1,2,1,2,0, 2}
{1,1,1,0,0,0,0,0,0,1,1,1}
{2,1,1,2,0,0,0,0,0.2,1,1,2}
{1,0,1,0,1,0,0,0,0,1,0,1,0, 1}
{2,2,2,2,2,2,0,0,0,2,2,2,2,2, 2}
{1,2,2,2,2,2,1,0,0,1,2,2,2,2,2,1}
{z,0,2,2,2,2,0,2,0,2,0,2,2,2,2,0,2)
{1,1,1,2,2,2,1,1,1,1,1,1,2, 2,2, 1,1, 1}
{¢,1,1,0,2,2,0,1,1,1,1,1,0,2,2,0,1,1, 2}
{1,0,1,2,1,2,1,2,1,1,1,1,2,1,2,1, 21,0, 1}

i, &,2,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,2, 2,2}
{L,2,2,1,0,0,0,0,0,2,1,1,2,0,0,0,0,0,1,2,2,1}
{¢,0,&,0,2,0,0,0,0,1,0,1,0,1,0,0,0,0,2,0,2,0,2}
{,1,1111,0.,0,0,2,2,2,2,2,2,0,0,0,1,1,1,1,1,1}
{2,1,1,1,1,1,z2,8,0,1,2,2,2,2,2,1,0,0,2,1,1,1,1,1, 2}
{1,0,1,1,1,1,0.1,0,2,0,2,2,2,2,0,2,0,1,0,1,1,1,1,0, 1}
(¢, 2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1,1,2,2,2,1,1, 1,2, 2, 2}
{1, 2,2,0,1,1,0,2,2,0,1,1,0,2,2,0,1,1,0,2, 2,0,1,1,0,2, 2,1}
{z,0,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1, 2,1, 2,0, Z}
{1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}

The Triangle Mod 3



The colored Triangle Mod 3 (red =0, green=1, hlue = 2)
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the two consecutive entries in the middle, which will be congruent to 1 (mod 2), which implies

that they are odd. Thus, we conclude that the induction hypothesisis true.

The remaining results dlow us to understand the structure of the triangle mod 3, and how it

behaves.

Theorem: a,,° 1(mod3)if nisevenand a, , ° 2 (mod 3) if nis odd.

Proof: (By induction) Weknow a, ,= 2"2forn>2. So,forn=3, a,,° 2 (mod 3) and for n=
4, a,,°1(mod3). Now assume a,, ° 1(mod 3)if nisevenand a, , © 2 (mod 3) if nis odd.
Thencondder a,,,,=2a,,. If a,,° 1(mod3), then a,,,, ° 2(mod 3); andif a,, ° 2 (mod 3),
then a,,,, ° 1 (mod 3). Thus, by induction, we conclude thet if niseven, a, , ° 1 (mod 3) and if

nisodd, a,, ° 2 (mod 3).

From the following two lemmas, we are able to determine the Structure of the ertire triangle mod

3.

Lemma: Ifa,, ° a,,.,(mod3),then a,,,,,, ° a,, (mod 3).

Proof: Leta,, °0and a,,,,° 0(mod 3). Weknow a,,,,.,=2a,,+2a,,,-3a,,,. SO,
Q101 © 2(0) + 2(0) — 0 (mod 3) whichmeans a,, ., © 0(mod 3). Let a,, ° 1 (mod 3) and

a, .1 ° 1(mod 3). Thenwecanwrite a,,,,,, © 2(1) +2(1) —0(mod 3), whichmeans a, ., ° 1
(mod 3). Findly,let a,, °2and a,,,, °2(mod 3). Thenthismeans, a,,, ., ° 2(2) +2(2) -0

(mod 3). Hence, a, ., ., ° 2(mod 3).

11



Lemma: If a,, ' a,,,,(mod3),then a,, 1 &, b @, (Mod3).

Proof: Consider a,,°1(mod3)and a,,,, ° 2(mod 3). Weknow a,,,,.,=2a,,+2a,,,,-
3a, - S0, A4, ° 2(1) +2(2)- 0(mod 3). Thus, a,,, ., ° 0(mod 3). Now consider a,, ° 1
(mod3)and a,,,,, ° 0(mod 3). Then a,,,,, ° 2(1) +2(0)- 0 (mod 3). Hence, a,.,,,,, ° 2 (mod
3). Findly, consgder a,, °0(mod3) and a,,,,, ®° 2(mod 3). Thismeans a,,;,, © 2(0) +2(2)- 0

(mod 3). Thus, a,,, ., ° 1 (mod 3).

In addition, we have two conjectures.

Conjecture: Inthetriangle mod 3, triangular formations composed of zeroeswill begin to take
formif and only if the row number isamultiple of 9.

Conjecture: Inthetriangle mod 3 where row 4 is now considered row 1, there will be only one
triangular formation composed of zeroes if and only if the row number can be

writtenas 3" forn 3 2.

12



V. Summary and Future Resear ch

To conclude, the following are the properties that have been found:

Theorem: Thetriangleissymmetrical (i.e: a,, = a, .. )-

Lemma a,, =2a,.,, forn33.

Theorem: a,, = 2™ forn3 2,

Lemma: a,,,,=2a,,+ 2" forn3 3.
Theorem: a,,=(n+1) 2" * forn3 4.

Lemma: a,,=2a,,,+a,,,+a,,, forn®4.

Theorem: a,,=(- 4+7n+n?)2"" forn3 4.

Lemma: S =2S ,+2S ,+2S ,+..+25 forn32.
Lemma: S =3S, ,forn3 3.

Theorem: S =(2/9) 3" forn® 2where S=1and S,=2.
Theorem: a,, =2a,,., +2a,,, 33, ,.,
Theorem: D, ,=2D,, +2D,, - 3D, , forn3 5.
Theorem: D,=D, , +3D,, forns 4.

Theorem: Theonly odd numbersin thetriangle are &, , and entries of theform a,, , and

8,1+ Theseare consecutive numbersin the middle of every even numbered

row.

13



Theorem: a,,°1(mod?3)if nisevenand a,, ° 2 (mod 3) if nisodd.
Lemma: Ifa,, ° a,,.(mod3),then a,,,,,,° a,, (mod3).
Lanma' If a'n,kl a'n,k+1 (mOd 3)1thm an,kl an+1,k+1 ! a'n,k+1 (mOd 3)

Conjecture: Inthetriangle mod 3, triangular formations composed of zeroes will begin to

take form if and only if the row number isamultiple of 9.

Conjecture: Inthetriangle mod 3 where row 4 is now considered row 1, there will be only

one triangular formation composed of zeroesif and only if the row number can
bewritten as 3" forn 3 2.
A good avenue to take in continuing this research would be to 1) prove the conjectures,
2) search for ways in which the triangle may be useful in various fields of mathematics, as
Pascdl’ striangleis, and 3) continue drawing paralels between Pascd’ s triangle and the variant.

| do not necessarily know what these may entail, but they seem like alogica next step.

14



VI. Appendix

Some results were proveninitidly by induction and then a more concise proof was
discovered at alater time. The following dternative proofs are the ones that were discovered

firgt during the research.

Theorem: a,,=(n+1) 2" * forn3 4.

Proof: (By Induction) Whenn=4, a,,=2(2)+ 2°=5= (4+1) 2°. Now assumethat a,, =

(n+1) 2" *istruefor somen. Since a,,,,=2a,,+ 2"° wehave a,,,, = 2((n+1) 2" ") +

2% = (n+2) 2™, and we condlude by induction that a, , = (n+1) 2" * for n2 4.
Theorem: a,,=(- 4+7n+n*)2"7 forn3 4.

Proof: (By Induction) Firg, forn=5, a;,=2a,,+ a,,+ a,,=2(5) +2+2=14=(-4+7(5) +
5%) 2. Now assumethat a,,= (- 4+7n+n?)2"" istruefor somen. Proceeding inductively,

— — 2 n-6 n-5 n-3
an+1,3_ 2an,3+ an-l,2+ an-l,l P an+l,3 _(_ 4+7n+n )2 +n2 +2 P a

n+1,3

2"3[(- 4+7n+n?)2°% +n22+1 b 2"°2°[(1/2) + (9n/8) + (rF/8)] B (4 +9n+rP) 2™°,

and we conclude by induction thet a, ,= (- 4 +7n+n?)2"" for n3 4.

Theorem: S,=(2/9) 3" forn3 2where S=1and S,=2.
Proof: (By Induction) Firgt, for n=3, S,=3S,=3(2) = 6=(2/9) 3%, Now assume that S, =
(2/9) 3" forsomen. So, S,,=3S, P 3(29) 3" b S, ,=(2/9) 3". Thus, by induction,

S..,=(2/9) 3" forn3 2.
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