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I. Introduction and Notation 

It is the purpose of this paper to explore a variant of Pascal’s triangle.  This variant has the 

rule that every entry, denoted as kna , , where 1,1a =1, is calculated in a way such that  

kna ,  = ∑
−

=
−−

1

1
,

k

i
ikina + ∑

−

=

1

,

n

ki
kia .  This means that when these numbers are put into a triangular 

formation, every number is the sum of all the numbers above it in its two diagonals.  The 

beginning of the triangle looks like the following: 

 
1 

1 1 
2    2    2 

4    5    5    4 
8   12  14  12   8 

16  28  37  37  28  16 
 
For example, 14 = 2 + 5 + 5 + 2.   

The rows of the triangle will begin at n=1 and work down the triangle in increments of 1.  

The columns of the triangle point southwest (60o from horizontal) and will begin at k=1, and 

proceed in increments of 1.  For example, we would say that the leftmost number 12 would be in 

row 5 and in column 2.  The anticolumns are the columns of the triangle pointing southeast that 

begin at k’=1, and proceed in increments of 1 moving diagonally from right to left.  So, for 

example, the rightmost number 12 would be in row 5 and in anticolumn 2.  Finally, Shallow 

diagonals point southwest (30o from horizontal).  For example, the third shallow diagonal 

consists of the elements 1,3a = 2 and 2,2a = 1.   
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II. Basic Lemmas & Theorems 
 

Some interesting discoveries found within this triangle will now be discussed, and 

proved, a lot of which is done through induction.  We begin with perhaps the most obvious 

result. 

Theorem:  The triangle is symmetrical (i.e.:  kna , = knna −+1, ). 

 
Proof:  (By Induction)  For n=3 and k=1, 1,3a  = 2 = 113,3 −+a = 3,3a .  Now assume that kna ,  = 

knna −+1,  for some n.  Then we can write ∑
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2,  by the induction hypothesis.  This is the same as  ∑
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2
2, which means kna ,1+  = knna −++ 2,1 .  Hence, by induction, 

we conclude that the triangle is symmetrical. 

 
We now develop some recursive and explicit formulas for calculating entries in the first three 

columns of the triangle.  The first formula calculates the entries in the first column. 

 
Lemma:  1,na  = 2 1,1−na  for n≥ 3. 

Proof:  By definition, 1,na  = ∑
−

=
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1
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ia = 1,1−na + ∑
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1
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i
ia by 

definition.  Hence, 1,na  = 2 1,1−na  for n≥ 3. 
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An explicit formula for entries in the first column is now given. 

Theorem:  1,na  = 22 −n  for n≥ 2. 

Proof:  Since 1,na  = 2 1,1−na , then the theory of difference equations implies 1,na  = C 12 −n .  

Solving for C when 1,4a  = 4.  We get C = ½, which means 1,na  = 22 −n  for n≥ 2. 

 
The following lemma is given to calculate the entries in the second column, and the next theorem 

is the corresponding explicit formula. 

 
Lemma:  2,1+na = 2 2,na + 32 −n  for n≥ 3.   

Proof:  We know 2,1+na = 1,na + ∑
=

n
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2,  by definition.  Further, 1,na = 1,1−na + ∑
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n

i
ia = 2,na  by definition, which implies 2,1+na = 1,1−na  + 2 2,na .  Therefore, by 

Theorem 1, 2,1+na = 2 2,na + 32 −n  for n≥ 3. 

 
Theorem:  2,na = (n+1) 42 −n  for n≥ 4. 

Proof:  The theory of difference equations implies 2,na = (A + Bn)( 42 −n ).  Solving for A and B 

when 2,3a = 2 and 2,4a =5, we get A=B=1.  So, 2,na = (n+1) 42 −n . 

Note: A different proof can be found in the appendix. 
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Finally, a recursive formula and corresponding explicit formula is given to calculate the entries 

in the third column, after which there does not appear to be a simple formula for calculating 

entries. 

 
Lemma:  3,na = 2 3,1−na + 2,2−na + 1,2−na  for n≥ 4. 

Proof:  By definition, 3,na  = ∑
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ia by definition.  Thus, 3,na  = 2,2−na  + 1,2−na  + 3,1−na  

+ 3,1−na  = 2 3,1−na  + 2,2−na  + 1,2−na  for n≥ 4.  

 

Theorem:  3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

Proof:  The theory of difference equations implies 3,na  = C( 72 −n ) + Dn( 72 −n ) + En2( 72 −n ).  

Solving for C, D, and E when 3,4a = 5, 3,5a = 14, and 3,6a = 37, we get C= -4, D= 7, and E= 1, 

which gives 3,na = ( 274 nn ++− ) 72 −n . 

Note: A different proof can be found in the appendix. 
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III. Other Lemmas & Theorems 
 

 These lemmas and theorems explain the behavior in the rows and shallow diagonals of 

the variant.  Let nS denote the sum of the entries in the nth row, and nD  denote the sum of the 

entries in the nth shallow diagonal. 

 
Lemma:  nS = 2 1−nS  + 2 2−nS  + 2 3−nS  + …+ 2 1S  for n≥ 2. 

Proof:  Choose an arbitrary element kra , .  Consider the nth row, where n > r.  Then kra , will 

appear in the formula for finding kna ,  because it is in the same column.  Further, kra ,  will appear 

in the formula for finding rnkna −+,  because of the fact that kra ,  is in its anticolumn.  Hence, the 

arbitrary element kra ,  is summed exactly twice in the row n for 1≤ r≤ n-1.  And so, the sum of 

the elements in row n would be equal to twice the sum of the elements in all previous rows.  

Therefore, we can write nS = 2 1−nS  + 2 2−nS  + 2 3−nS  + …+ 2 1S  for n≥ 2. 

 
Lemma:  nS = 3 1−nS  for n≥ 3. 
 
Proof:  It can be shown that nS = 2 1−nS  + 1−nS , and since 1−nS = 2 2−nS  + 2 3−nS  + …+ 2 1S .  This 

means nS = 3 1−nS . 

 
The next theorem provides an explicit formula for calculating the sum of the entries in any given 

row. 
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Theorem:  nS = (2/9) n3  for n≥ 2 where 1S = 1 and 2S = 2. 

Proof:  From the theory of difference equations and lemma 4, nS = C + D n3 .  Since 2S = 2 and 

3S = 6, solving for C and D, we get C = 0 and D = (2/9).  Thus, nS = (2/9) n3 . 

Note: A different proof can be found in the appendix. 
 
 
The following theorem can be used to calculate any given entry in the triangle, and is used to 

prove the next couple theorems. 

 
Theorem:  kna ,  = 2 1,1 −− kna  + 2 kna ,1−  – 3 1,2 −− kna  for n ≥ 3. 

 

Proof:  We know kna ,  = ∑
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Also, kna ,  + 1,2 −− kna  = 2 1,1 −− kna  + 2 kna ,1−  - 2 1,2 −− kna .  Hence, kna ,  = 2 1,1 −− kna  + 2 kna ,1−  - 3 1,2 −− kna . 
 
 
With the next two theorems, we are able to calculate the sum of the entries in shallow diagonals. 
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Theorem:  nD = 2 1−nD  + 2 2−nD  - 3 3−nD  for n≥ 5. 
 
Proof:  We know kna ,  = 2 1,1 −− kna  + 2 kna ,1−  - 3 1,2 −− kna  for n≥ 2.  If we let kna ,  be in nD , then 

1,1 −− kna  is in 1−nD ; kna ,1−  is in 2−nD ; and 1,2 −− kna  is in 3−nD .  Consider kra , , an arbitrary element in 

nD .  If we let r = n+1-k, then 
 

∑
=

−+

2/

1
,1

n

k
kkna = 2

 

∑
=

−−
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1
1,
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kkna + 2

 
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,

n
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 

∑
=

−+−
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1
1,1

n

k
kkna .  It is 

important to note that in some of the summations there may exist terms in the form 0,ra or 1, +rra .  

These terms are actually equal to zero and hence do not affect the sum.  Thus, nD = 2 1−nD  + 

2 2−nD  - 3 3−nD  . 

 
Theorem:  nD = 1−nD  + 3 2−nD  for n≥ 4. 
 
Proof:  (By Induction)  For n=4, 4D = 4 + 2 = 3D  + 3 2D .  Now assume nD = 1−nD  + 3 2−nD  for 

some n.  Also, recall nD = 2 1−nD  + 2 2−nD  - 3 3−nD .  So, 1+nD = 2 nD  + 2 1−nD  - 3 2−nD = 

nD + nD + 2 1−nD - 3 2−nD = nD + 2 1−nD + 1−nD + 3 2−nD - 3 2−nD  by the induction hypothesis.  

Thus, 1+nD = nD  + 3 1−nD .  Hence, by induction, we conclude nD = 1−nD  + 3 2−nD . 
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IV. The Triangle Mod 2 and 3 
  

After examining the properties of the variant, we decided to explore the triangle mod 2 

and 3, since Pascal’s Triangle contained some interesting properties in its triangle mod 2 and 3.  

While Pascal’s Triangle mod 2 displays a fractal structure, our variant does not, but it does 

display some intriguing patterns mod 3.  A picture of the triangle mod 3, as well as the 

mentioned fractal patterns can be seen in the colored triangle mod 3 on the next two pages.  The 

following theorem tells us that the triangle mod 2 does not display any fractal structure. 

Theorem:    The only odd numbers in the triangle are 1,1a  and entries of the form kna ,2 and 

1,2 +kna .  These are consecutive numbers in the middle of every even numbered 

row. 

Proof: (By induction on rows) Consider row 4.  We see that row 3 has only even entries.  Also, 

1,4a and 4,4a  are composed of 1+1+2+4 = 8, which is even.  Further, 2,4a and 3,4a are composed 

of 1+2+2 = 5, which is odd.  So, 2,4a and 3,4a are the only odd entries in row 4, and are in the 

center of the triangle.  Thus, the hypothesis is true for row 3 and row 4.  Now assume for some 

row r that all rows before and including it behave in the hypothesized fashion.  Consider rows 

r+1 and r+2.  Recall that kna ,  = 2 1,1 −− kna  + 2 kna ,1−  – 3 1,2 −− kna .  So, kna ,  will be even if kna , ≡ 0 

(mod 2).  Thus, for row r+1, kra ,1+  = 2 1, −kra  + 2 kra ,  – 3 1,1 −− kra .  But 1,1 −− kra  is even for all entries 

in row r-1 by the induction hypothesis, therefore kra ,1+ = 0+0–0 = 0 (mod 2).  Hence, all entries in 

row r+1 are even.  For row r+2 we know that 1, −kra  will be even except for the two consecutive 

entries in the middle of the row.  This means that all entries in row r+2 will be even except for  
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the two consecutive entries in the middle, which will be congruent to 1 (mod 2), which implies 

that they are odd.  Thus, we conclude that the induction hypothesis is true. 

 
The remaining results allow us to understand the structure of the triangle mod 3, and how it 

behaves. 

 
Theorem:  1,na ≡ 1 (mod 3) if n is even and 1,na ≡ 2 (mod 3) if n is odd. 

 
Proof:  (By induction)  We know 1,na = 2n-2 for n > 2.  So, for n = 3, 1,3a ≡ 2 (mod 3) and for n = 

4, 1,4a ≡ 1 (mod 3).  Now assume 1,na ≡ 1 (mod 3) if n is even and 1,na ≡ 2 (mod 3) if n is odd.  

Then consider 1,1+na = 2 1,na .  If 1,na ≡ 1 (mod 3), then 1,1+na ≡ 2 (mod 3); and if 1,na ≡ 2 (mod 3), 

then 1,1+na ≡ 1 (mod 3).  Thus, by induction, we conclude that if n is even, 1,na ≡ 1 (mod 3) and if 

n is odd, 1,na ≡ 2 (mod 3). 

 
From the following two lemmas, we are able to determine the structure of the entire triangle mod 

3. 

  
Lemma:  If kna , ≡  1, +kna (mod 3), then 1,1 ++ kna ≡ kna , (mod 3). 

 
Proof:  Let kna , ≡ 0 and 1, +kna ≡ 0 (mod 3).  We know 1,1 ++ kna = 2 kna , + 2 1, +kna - 3 kna ,1− .  So, 

1,1 ++ kna ≡ 2(0) + 2(0) – 0 (mod 3) which means 1,1 ++ kna ≡ 0 (mod 3).  Let kna , ≡ 1 (mod 3) and 

1, +kna ≡ 1 (mod 3).  Then we can write 1,1 ++ kna ≡ 2(1) + 2(1) – 0 (mod 3), which means 1,1 ++ kna ≡ 1 

(mod 3).  Finally, let kna , ≡ 2 and 1, +kna ≡ 2 (mod 3).  Then this means, 1,1 ++ kna ≡ 2(2) +2(2) – 0 

(mod 3).  Hence, 1,1 ++ kna ≡ 2 (mod 3). 
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Lemma:  If kna , ≠ 1, +kna (mod 3), then kna , ≠ 1,1 ++ kna  ≠ 1, +kna (mod 3). 

 
Proof:  Consider kna , ≡ 1 (mod 3) and 1, +kna ≡ 2 (mod 3).  We know 1,1 ++ kna = 2 kna , + 2 1, +kna - 

3 kna ,1− .  So, 1,1 ++ kna ≡  2(1) + 2(2)- 0 (mod 3).  Thus, 1,1 ++ kna ≡ 0 (mod 3).  Now consider kna , ≡ 1 

(mod 3) and 1, +kna ≡ 0 (mod 3).  Then 1,1 ++ kna ≡  2(1) + 2(0)- 0 (mod 3).  Hence, 1,1 ++ kna ≡ 2 (mod 

3).  Finally, consider kna , ≡ 0 (mod 3) and 1, +kna ≡ 2 (mod 3).  This means 1,1 ++ kna ≡  2(0) + 2(2)- 0 

(mod 3).  Thus, 1,1 ++ kna ≡ 1 (mod 3). 

 
In addition, we have two conjectures: 

Conjecture:  In the triangle mod 3, triangular formations composed of zeroes will begin to take 

form if and only if the row number is a multiple of 9. 

Conjecture:  In the triangle mod 3 where row 4 is now considered row 1, there will be only one 

triangular formation composed of zeroes if and only if the row number can be 

written as 3n for n ≥ 2. 
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V. Summary and Future Research 

 To conclude, the following are the properties that have been found: 

Theorem:  The triangle is symmetrical (i.e.:  kna , = knna −+1, ). 

 
Lemma:  1,na  = 2 1,1−na  for n ≥ 3. 

 
Theorem:  1,na  = 22 −n  for n≥ 2. 
 
Lemma:  2,1+na = 2 2,na + 32 −n  for n≥ 3.   

 
Theorem:  2,na = (n+1) 42 −n  for n≥ 4. 

 
Lemma:  3,na = 2 3,1−na + 2,2−na + 1,2−na  for n≥ 4. 

 
Theorem:  3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

 
Lemma:  nS = 2 1−nS  + 2 2−nS  + 2 3−nS  + …+ 2 1S  for n≥ 2. 

 
Lemma:  nS = 3 1−nS  for n≥ 3. 
 
Theorem:  nS = (2/9) n3  for n≥ 2 where 1S = 1 and 2S = 2. 

 
Theorem:  kna ,  = 2 1,1 −− kna  + 2 kna ,1−  – 3 1,2 −− kna  

 
Theorem:  nD = 2 1−nD  + 2 2−nD  - 3 3−nD  for n≥ 5. 

 
Theorem:  nD = 1−nD  + 3 2−nD  for n≥ 4. 

 
Theorem:   The only odd numbers in the triangle are 1,1a  and entries of the form kna ,2 and 

1,2 +kna .  These are consecutive numbers in the middle of every even numbered 

row. 
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Theorem:  1,na ≡ 1 (mod 3) if n is even and 1,na ≡ 2 (mod 3) if n is odd. 

 
Lemma:   If kna , ≡  1, +kna (mod 3), then 1,1 ++ kna ≡ kna , (mod 3). 

 
Lemma:   If kna , ≠ 1, +kna (mod 3), then kna , ≠ 1,1 ++ kna  ≠ 1, +kna (mod 3). 

 
Conjecture:  In the triangle mod 3, triangular formations composed of zeroes will begin to 

take form if and only if the row number is a multiple of 9. 

Conjecture:  In the triangle mod 3 where row 4 is now considered row 1, there will be only 

one triangular formation composed of zeroes if and only if the row number can 

be written as 3n for n ≥ 2. 

A good avenue to take in continuing this research would be to 1) prove the conjectures, 

2) search for ways in which the triangle may be useful in various fields of mathematics, as 

Pascal’s triangle is, and 3) continue drawing parallels between Pascal’s triangle and the variant.  

I do not necessarily know what these may entail, but they seem like a logical next step.   
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VI. Appendix 
 
 Some results were proven initially by induction and then a more concise proof was 

discovered at a later time.  The following alternative proofs are the ones that were discovered 

first during the research. 

Theorem:  2,na = (n+1) 42 −n  for n≥ 4. 

Proof:  (By Induction)   When n = 4, 2,4a = 2 (2) + 02 = 5 =   (4+1) 02 .  Now assume that 2,na = 

(n+1) 42 −n is true for some n.  Since 2,1+na = 2 2,na + 32 −n  we have 2,1+na = 2((n+1) 42 −n ) + 
32 −n  = (n+2) 32 −n , and we conclude by induction that 2,na = (n+1) 42 −n  for n≥ 4.  

 
 
Theorem:  3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

Proof:  (By Induction)  First, for n=5, 3,5a = 2 3,4a + 2,3a + 1,3a = 2(5) + 2 + 2 = 14 = (-4 + 7(5) + 

52) 2-2.  Now assume that 3,na = ( 274 nn ++− ) 72 −n  is true for some n.  Proceeding inductively, 

3,1+na = 2 3,na + 2,1−na + 1,1−na  ⇒  3,1+na  = ( 274 nn ++− ) 62 −n  + n 52 −n  + 32 −n  ⇒  3,1+na = 

32 −n [( 274 nn ++− ) 32 −  + n 22 −  + 1] ⇒  62 −n 32 [(1/2) + (9n/8) + (n2/8)] ⇒  (4 + 9n + n2) 62 −n , 

and we conclude by induction that 3,na = ( 274 nn ++− ) 72 −n  for n≥ 4. 

 
Theorem:  nS = (2/9) n3  for n≥ 2 where 1S = 1 and 2S = 2. 

Proof:  (By Induction)  First, for n=3, 3S = 3 2S = 3(2) = 6 = (2/9) 33.  Now assume that nS = 

(2/9) n3  for some n.  So, 1+nS = 3 nS  ⇒  3(2/9) n3  ⇒  1+nS = (2/9) 13 +n .  Thus, by induction, 

1+nS = (2/9) 13 +n  for n≥ 2. 

 


