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Carangiform (tuna-like) swimming is effective in producing forward thrust through counter-

rotating vortices left in the wake. B. Ahlborn et al. (1997) mimicked carangiform motions with a

computer–controlled fishtail simulation apparatus. Ahlborn et al. states two claims: (i) fish hide

their “footprints” through the destruction of these vortices, which increases efficiency and (ii)

thrust force of his vortex-producing robot is derived by 3 2
xF  = (2/ )K hA fπ ρ . K is a water

entrainment constant of 40, ρ is the density of water, h is the submerged height of the tailfin, A is

the deflection amplitude, and f is the frequency. While the peduncle’s deflection amplitude was

held constant, we swam our carangiform-swimming robot using 160 unique motions (gaits) to

obtain values of efficiency and velocity at four distinct frequencies, ten distinct phase angles, and

four distinct tailfin amplitudes. Maximum values of efficiency and velocity were found on 3-D

surfaces. Our experimental thrust force was estimated by creating a function of drag forces at

different steady-state velocities. When using Ahlborn et al.’s equation, our thrust force appeared

to be proportional to a square root function of the frequency. Under certain constraints, we

determined optimal thrust and efficiency, which yields the best gait at 40P80W20.

Understanding these relationships allows us to control and predict the efficiency, velocity, and

thrust force of our robot within certain parameters.
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Chapter 1, Introduction

Fish are excellent, efficient swimmers. By adding momentum to the water and shedding

counter-rotating vortices in the wake, a swimming fish can produce forward thrust through

undulating motions of its body and/or tail (Ahlborn et al. 1997, Muller et al. 1997). Five of the

various locomotion modes are anguilliform (eel-like), sub-carangiform (i.e. trout), carangiform

(i.e. mullet), thunniform (i.e. bluefin tuna), and ostraciiform (oscillatory).

For several decades, mechanical engineers have attempted to reproduce the motions of

this animal with robots. These scientists have attempted to mechanically replicate the relative

quietness, high maneuverability, high adaptability, and high efficiency that fish have

demonstrated for many years. Since there is no handbook on building such robots, many of the

ideas are innovative and creative. For instance, the Charles Stark Draper Laboratory and the

Massachusetts Institute of Technology (MIT) have engineered robots to swim like fish. Draper

Laboratory created the Vorticity Control Unmanned Underwater Vehicle (VCUUV); MIT

produced RoboTuna. Both robots attempt free-swimming.

One of the main difficulties in doing this successfully is that fish are very complex. For a

free-swimming fish, the degrees of freedom are found in the pitch, roll, spin, lateral, longitudinal,

and vertical displacements.  This does not take into account the many other degrees created along

the body, like bending and twisting. Therefore, engineers have had to make innovative robots

and use mathematical models to get the best performance from their designs.  The use of

mathematics has been an essential tool to these pioneers.

At the California Institute of Technology, we studied issues in fluid mechanics, nonlinear

control, and sensing that are necessary for the development of a self-propelled robot. In our
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laboratory, our robot “fish” could swim in both carangiform and thunniform swimming modes.

Finding optimal motions at the different levels of efficiency, velocity, and thrust provides an

understanding of the performance and control of the robot. For a given gait input, we should be

able to predict the values of velocity, efficiency, and thrust forces.

Multiobjective Optimization (MO), also known as multicriteria and vector optimization,

can be used to find the best tradeoff of values between two interdependent objects.  Usually,

improvement in one object's value would cause the other object to lose value, and vice versa.  In

our case, we wanted to find the “best” gait by optimizing the thrust and efficiency ratio for our

robot.
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Chapter 2, Background Information

Various studies, from such fields as biology, mathematics, and engineering, are useful in

studying how fish swim, naturally and mechanically.  Marine biologists have studied vortex

shedding in the wake and the interaction between the water and the fish body (Muller et al.

1997).  They have approximated the motion of a mullet to be sinusoidal (Muller et al. 1997). M.

J. Lighthill (1970) offers a preliminary quantitative analysis of how a series of modifications to

that basic undulatory mode, found in vertebrates (and especially fish), tends to improve speed

and hydromechanical efficiency. He states that the carangiform mode is advantageous from the

point of view of propulsive efficiency. Ahlborn et al. (1997) claimed that fish hide their

“footprints” through the destruction of these vortices, which increases efficiency. Carangiform

locomotion is evident when the final third to half of the body is undulating while the remainder

is fairly rigid.  Carangiform-like swimming is effective in creating counter-rotating vortices,

whirling masses of water within a limited area (Fig. 1).

Fig. 1.  Thrust production in the wake.

The equation for thrust force based on experiments with a vortex-shedding apparatus

(Ahlborn et al. 1990, Ahlborn et al. 1997) follows:

3 2
x

2
F  = K hA fρ

π
(1)
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Ahlborn et al. computer-controlled apparatus has a tail that moves in premeditated paths

and focused mainly on half-flips. It created a vortex with the first tail flip (Ahlborn et al. 1997).

Then inverted the vortex on the return stroke (Ahlborn et al. 1997). Equation one describes the

thrust force produced along the direction of motion.  Shapiro (1961) used drag experiments as a

vehicle for discussing the fundamentals of fluid dynamics.

Mathematicians used optimization for various applications. According to Eschenauer et

al. (1986), Gottfried W. Leibniz and Leonhard Euler used infinitesimal calculus to find the

extreme values of functions. This made it possible for pioneers to study various new fields of

mechanics (Eschenauer et al. 1986). For example, Bernoulli and D. Bernoulli used optimization

on isoperimetric problems; Isaac Newton used the method for minimizing the resistance of a

revolving body (Eschenauer et al. 1986). Vilfredo Pareto initially used MO in economics

(Eschenauer et al. 1986). Using this technique can aid us in our understanding of underwater

locomotion and control of our robot’s performance.
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Chapter 3, Materials and Methods

The experiments were performed by swimming a computer-controlled robot, which is

supported by a carriage that rolled on a pair of frictionless rails that ran parallel along the top of

the aquarium (Fig. 2a). This carriage held the twin motors with motor encoders, transmission,

and a Polhemus 3-space motion sensor. The Polhemus motion sensor is in a fixed position. The

Polhemus 3-D detector receives and records the three-dimensional position of the sensor over

time. The design specifications of the robot can be obtained on request.

(a) (b)

Fig. 2.  (a) Side and (b) top view of robot.

To mimic carangiform motion, the three-link robot used the final third of its body to

move while the rest of the body was fairly rigid. This third had two main parts called the

peduncle and tailfin, which both turned independently about its respective joint in a sinusoidal

manner (Fig. 3). The robot was designed to propel itself by two joint degrees of freedom for the

peduncle and the tailfin. Additionally, it had one to three degrees of freedom for lateral,

longitudinal and rotational motions within the plane of the water surface (Fig. 2b). For our

experiment, motions were limited to three degrees of freedom at the turning at the two joints and
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the forward motion. Motors encoders measure the actual angles created by each motor. These

values are stored in matrices, joutp and joutt. Based on the difference between desired and actual

θ values, the computer increased or decreased power sent to the motor(s).

(a)

(b)

Fig. 3.  (a) Side and (b) top view of three-link robotic carangiform locomotion.

The peduncle and tailfin move as a sinusoidal function of time (Fig. 4). Both joint angles,

θ1 and θ2 --- in obvious notation, θp and θt --- are independent of each other (see Fig. 3). We

have joint angles represented such that

p ptθ ω φ= ( + ) (2)

and

t t= ( + ).tθ ω φ (3)

However, we let
 = tpθ ω (4)

and

t t = +θ ω φ (5)

with

t = ( + ),pφ φ φ (6)

for a single phase-difference variable. The amplitudes, Ap and At, were measured in encoder

ticks, where 90° deflection is equivalent to 512 encoder ticks. We created unique gaits by

inputting a text file with the desired parameters and using equations that follows:

p pj  = A  sin ( t)ω (7)
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t tj  = A  sin ( t + )ω φ . (8)

Text files were inputted as gait names that were represented by two digits for the phase

angle, followed by a "P", the frequency in tenths of radians per second, followed by a "W" for

"ω," one digit for the amplitude of the peduncle, and one digit for the amplitude of the tailfin.

For example, “40P20W23” commanded the robot to swim at a frequency of 2.0 radians per

second with the peduncle amplitude at 2 in hundreds of encoder ticks, and the tailfin at 3 in

hundreds of encoder ticks (Fig. 4).

Fig. 4.  Sinusoidal motion of tailfin and peduncle for 40-degree phase difference, frequency
of 2.0 rad/s, peduncle’s amplitude at 200 encoder ticks, and tailfin amplitude at 300

encoder ticks.

We used our desired parameters to create a unique gait name. After we entered a gait

name, the robot “swam” while a Polhemus 3-D detector received and recorded the three-

dimensional position of the robot body over time. Data was obtained for 160 unique gaits for 4

distinct frequencies, 4 distinct amplitudes, and 10 distinct phase-difference angles. Values of
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efficiency and velocity were derived. The frequencies were 2.0, 4.0, 6.0, and 8.0 radians per

second.  The amplitude values were at 0, 100, 200, and 300 encoder ticks. The phase-difference

values were taken from 0° to 90° by increments of 10°.

Optimizing velocity

Position was plotted at every fiftieth of a second (Fig. 5). Elapsed time per gait ranged

from 12-15 seconds. Velocity was calculated by the distance traveled over the change of time,

from 0.5 to 9.5 seconds. Three-dimensional surfaces of velocity were constructed for each of the

frequencies (Fig. 6-9). These surfaces illustrated the relationship between different parameters of

frequency, tailfin amplitude, and phase angle.

Fig. 5.  Distance traveled over time.
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Fig. 6.  Frequency is 2.0 rad/sec.
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Fig. 7.  Frequency is 4.0 rad/sec.
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Fig. 8.  Frequency is 6.0 rad/sec.
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Fig. 9.  Frequency is 8.0 rad/sec.
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Optimizing efficiency

Relative efficiency is a function of velocity and the total power. It was calculated by

dividing the total kinetic energy by the total power given to the motors during each run (Eqns. 9-

11). The mass, m, of the entire robot was 34 kg (approx. 74.8 lbs). We constructed 3-D surfaces

of efficiency for each of the frequencies (Fig. 10-14).

21
KE = mv

2
(9)

1 2Total power = power  + power (10)

KE
Efficiency = 

(Total power)
(11)
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Fig. 10.  Frequency is 2.0 rad/sec.
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Fig. 13.  Frequency is 6.0 rad/sec.
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Controlling thrust

Equation 1 was analyzed. For the experimental thrust, K and ρ remained as our constants.

Frequency values were 2.0, 4.0, 6.0, and 8.0 radians/second. Our submerged height, h, was 17.5

inches. Since A is the deflection amplitude of the tail tip, we converted our amplitudes values in

MATLAB by using the equations that follows:

| hmax+hmin |
A = , 

2
(12)

where

joutp*2 joutt*2
hmax=max(lp*sin( )+lt*sin( ))

2048 2048

π π
(13)

and
joutp*2 joutt*2

hmin=min(lp*sin( )+lt*sin( ))
2048 2048

π π
(14)

The length of the peduncle, lp, was 0.127m (5 inches); the length of the tailfin, lt, was

0.1651m (6.5 inches). To find the experimental thrust force, we applied a constant force to the

robot by tying a nylon string and tested different weights on a pulley system. As the robot moved

in the forward direction, the drag force increased and acceleration decreased from its initial value

of 9.8 m/s2. It reached a steady-state velocity. At a steady-state velocity,

| T - D |
Acceleration =  = 0,

mass
(15)

which lead to
| T - D | = 0, (16)

demonstrating that the steady state drag is equal to the steady state thrust. We used the Polhemus

to obtain a steady state velocity value for each weight (constant force). Using MATLAB, a thrust

force versus velocity relationship was found using the linear and quadratic polyfit. For a constant

acceleration, steady-state drag measurements were plotted against steady-state velocity values

(Figs. 15-16).
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Fig. 15.  Experimental steady state drag measurements with quadratic polyfit curve.

Fig. 16.  Linear and quadratic polyfit curves used to determine thrust force.
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Using the linear and quadratic polyfit curves allowed us to input velocities of the

corresponding gait names and acquire respective thrust values. By using these thrust values, we

created experimental thrust surfaces (Figs. 17-18). In addition, we created a theoretical surface

(Fig. 19) using Ahlborn et al.'s equation and the given parameters. Our experimental surface

(Fig. 20) was then graphed on the same intervals as Fig. 19. Calculations were made within the

programs, but the equations for our experimental thrust force can be found if needed.
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Fig. 17.  Surface of linear fit.



20

Fig. 18.  Surface of Quadratic polyfit.

Fig. 19.  Thrust predictions according to Ahlborn et al.
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Fig. 20  Experimental thrust on the same axis.

Optimizing gaits

We created constraints where the velocity and efficiency were nonnegative and of equal

importance. We matched the range of relative efficiency to that of the velocity, added the corresponding

values, and found the maxima in Microsoft Excel 2000.
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Chapter 4, Results

Optimizing velocity

Maxima over the entire surface were found at the following gaits:

–50P20W22 = 0.4202 meters/sec
–60P40W21 = 0.8532 meters/sec
–30P60W22 = 1.0312 meters/sec
–40P80W23 = 1.0440 meters/sec

Optimizing efficiency

Maxima over the entire surface were found at the following gaits:

–80P20W22 = 0.0056
–70P40W21 = 0.0113
–50P60W21 = 0.0139
–00P80W20 = 0.0105

Controlling thrust

It appeared that our fish has
Fx ∝ f  1/ 2 (17)

as opposed to
Fx ∝ f 2 (18)

as stated by Ahlborn et. al. (Fig. 18-19). Our experimental thrust force seemed directly

proportional to the square root of the frequency. Thrust force of the robot appeared less than

expected, as well.

Optimizing gaits

Where velocity and efficiency was of equal importance, the best motions were found at the

following gaits:

–70P20W22
–60P40W21
–40P60W21
–30P80W20
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The “best” gait was found at 40P60W21.  It had a velocity of 0.9763 meters per second

and an efficiency of 0.0139.  The second, third, and fourth optimal gaits were at 30P60W21,

60P60W21, and 20P60W21, respectively (Tab. 1).

tailfin amplitude (encoder ticks)
0 100 200 300 MAX

0 N/A N/A N/A N/A N/A
10 1.5986 1.3641 1.7148 1.6450 1.7148
20 1.6222 1.7515 1.5198 1.7037 1.7515
30 1.5867 1.8494 1.5582 1.4022 1.8494

phase 40 1.6612 1.9363 1.3046 1.0889 1.9363
difference 50 1.2537 1.7281 1.0794 1.0077 1.7281
(degrees) 60 1.4731 1.8082 1.1100 0.8670 1.8082

70 1.6113 1.7924 0.9491 0.6593 1.7924
80 1.5721 1.2510 0.7560 0.5145 1.5721
90 1.3679 1.5043 0.6931 0.5198 1.5043

MAX 1.6612 1.9363 1.7148 1.7037 1.9363

Table 1. Data used to find best gait; frequency at 6.0 rads/sec
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Chapter 5, Discussion

Optimizing velocity

We were interested in discovering the inputs that yield the fastest gait. Data shows that

velocity increased as the frequency increases, while the amplitudes varied, and as phase angles

seemed to decrease. Initially, we did see that relationship where velocity and frequency increased

(Figs. 6-9). At increased frequencies, we got more distortion and irregularity, but the same

relationships are consistent. It appeared that the amplitudes would vary for the different

frequencies of velocity. Optimal velocity was achieved when phase angles were in the 30, 40, 50,

60 values accompanied by high frequency and high amplitude. For future experiments, the 45-

degree phase angle will be tested and analyzed. This may be the optimal phase angle according

to previous unpublished work done with the older versions of the robot.

Optimizing efficiency

We were interested in discovering the inputs that yield the most efficient gait within the

restrictions. Data showed that efficiency increased as the frequency appeared to increase, the

amplitude decreased, and the phase angle decreased. The relation between relative efficiency and

frequency must be interpreted with caution. As frequency increased, the overall efficiency rose.

But then in Fig. 14,overall efficiency dropped. Within the parameters, the efficiency was the best

at a frequency of 6.0 radians/sec (Figs. 10-14). Yet, there were huge drop-offs in the surfaces.

We lost a lot of efficiency with a change of amplitude.  Upon visual analysis, it appeared that

would increase as frequency increased as long as the amplitude would decrease at the same time.

We assumed that at high frequencies that the overall efficiency will decrease. The relationship

with amplitudes here was difficult to interpret due to some randomness in the data. Changing the
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phase angle varies the value for efficiency, almost unpredictably. Optimal efficiency may be

found at a frequency at or near 6.0 radians/sec, with amplitude at or near 100 encoder ticks, and

where phase angle is approaching 90 degrees.

With these results, we come closer to controlling the outputs that we want for a given

gait. Efficiency and velocity differ where maxima were not found at the same gait. So by

changing the parameters of the amplitude, frequency, and phase angle, we can achieve either

optimal velocity or optimal efficiency. Further research will be done at different increased values

of At and Ap. Further experiments will be performed on the latest model.

Controlling Thrust

Although we came to a different idea on thrust, our goal was not to disprove claims by

Ahlborn et al. We simply used his findings as a guide. Both of our robots produced thrust by

shedding counter-rotating vortices. However, our robot was allowed to “swim,” while their

apparatus was stationary. Our robot would have added mass effects and more forces acting on

the tailfin, peduncle, and body than in the tail-flip apparatus. These additional forces are at times

when the robot has not achieved a steady state velocity. Despite this, a real-time computer

simulation of the robot was created after obtaining drag force calculations.

Despite the differences shown graphically, we believe that the equation was useful for

our results.  We may recalculate the steady state velocities. For some of the heavier weights, we

may not achieve the most accurate velocity approximations due to the length of the tank. The

relationship between amplitude and thrust force was not clear.

Optimizing gaits

Since the experimental thrust force is a function of velocity, we can assume that the

optimal gaits at different frequencies will be equal. When thrust and efficiency are equally
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important, we find the best motions at the same gaits.  It is clear that efficiency made the

difference. Optimization lowered the phase angles by ten degrees in some cases. We noticed that

the data became increasingly unpredictable at the higher frequencies. Using Pareto optimization

at varied constraints may give us several critical gaits for our robot.
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Chapter 6, Conclusions

We have learned how to control our robot within certain parameters. Obviously, this

robot was not as advanced a swimmer as a real fish. However, we believe our experiments have

brought us a closer understanding of aquatic locomotion.

The use of Multiobjective Optimization found the best motion for our robot under a

constraint. Taking a graduate course in linear programming and non-linear programming would

make this easier to model.  An introductory course in fluid dynamics would also help.

Currently, we plan to modify the transmission, anodize the body, and redo experiments.

We may try experiments with various tailfin shapes, i.e. lunate, crescent moon shaped. The use

of different tailfin shapes moving to a larger aquarium may prove to be advantageous for data

accuracy. More degrees of freedom will be added in future experiments. The velocity, efficiency,

and drag experiments will be repeated with a modified version of the robot. Additionally,

calculations of absolute efficiency will be made.

This research has helped improve our current understanding of robotic swimming. We

can control the velocity, efficiency, and thrust force produced by the robot within certain

parameters. Hopefully, many future applications in military defense, satellite communication,

subterranean exploration, “fishing”, and others will become available with the advent of a free-

swimming robotic fish.
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List of symbols

Fx thrust force
π pi (=3.14159 . . . )
K water entrainment constant of 40
ρ density of water (approx. 1000 kg m3)
h submerged height of the tailfin
A amplitude of tail tip deflection
Ap amplitude of the peduncle
At amplitude of the tailfin
θ joint angle
θp joint angle of the peduncle
θt joint angle of the tailfin
f frequency
φ phase difference angle
φp phase angle of the peduncle
φt phase angle of the tailfin
ω angular velocity
##P phase angle
##W frequency
fps# forward velocity
T thrust force
D drag force
hmax maximum deflection of the peduncle and tailfin
hmin minimum deflection of the peduncle and tailfin
joutp actual encoder angles of the peduncle
joutt actual encoder angles of the tailfin
lp length of the peduncle
lt length of the tailfin
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