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ABSTRACT

Equationa logic is a formalization of the deductive methods
encountered in studying the set of all equations that can be derived from
agiven fixed set of equations. So it is naturally associated with abstract
algebraic structures. The equations involved are interpreted as being
truefor al the variablesinvolved and so are best thought of asidentities.
In complexity, equationa logic sits somewhere between propositional
and first-order logic. And even though it may appear smple a first
sight, many of the problems are very interesting and non-trivial. Severa
are actualy quite difficult and some are still open. Inthisexposition our
god isto introduce equationa logic in an informal way as a bridge from
the propositiona logic to the first-order logic and contrast it with them.

" This is an expanded version of a talk presented at the MAA Florida
Section Annual Meseting at FGCU, March 2nd-3rd, 2001.



1. Introduction.

Equationa logic is often referred to as universal algebra because
of its natural association with abstract algebraic structures but thisis not
the view we shall take here. We shadl view it asalogic and accordingly
begin by giving a generd outline of what is alogic. Thereis alarge
body of work on equational logic and we refer the reader to the very
comprehensive survey by Taylor [1979], even though it may be alittle
dated. Our goal isto show how equationa logic can be use to motivate
the study of first-order logic and model theory. Along the way we shall
present a few interesting problems as they arise, including the resolution
of the famous Robbins conjecture by an automated theorem prover.

A logic conssts of an alphabet of symbols, a syntax and a
semantics. It issimilar in many ways to a written language and can, in
fact, be consdered awritten language. The symbolsin the alphabet are
caled letters and the syntax specifies the way in which these |etters are
used to construct formulas The syntax has to be such there is an
agorithm to determine in a finite number of steps whether or not an
arbitrary finite string of lettersis aformula. The set of al formulasis
called the language of the logic. The semantics specifies the intended
meaning of the formulas by interpreting the language in a structure. A
structure consists of aset A (called the domain of the structure) together
with certain relations and functions on A of various arities. The arity is
the number of variables involved in the relation or function.

A sentence is a formula with no free variables. In propositional
and equational logic dl formulas are sentences. In first-order logic,
($X)(" X)(x+y = x-y) isasentence but ($x)(X.y = x+y) isnot. Let Gbea
set of sentences and ? be a given sentence. We say that ?isa logical
consequence of G if ?istruein al structures in which al the sentences
of G aretrue.

A theoryisaset T of sentences, in some underlying logic, which
is closed under logical consequences (i.e., if ?isalogica consequence
of T, them ? must bein T). If the underlying logic is equationa logic
(propositional or first-order logic), then we will cal the theory an
equational theory (propositional and first-order theory, respectively).



There are two basic ways of specifying theories. If G is any set of
sentences, we can get a theory by letting T be the set of al logical
consequences of G and we will write thisas T = Conseg(G). We can
also get atheory by letting T be the set of all sentencesthat aretruein a
fixed structure A or in every member of a whole class of structures
{A:AT C}. Wewill writethisas T=Th(A) or as T=Th{A:Al C})

There are three basic questions about theories.

(a) Isthetheory T dgorithmically decidable ?
(b) Isthetheory T axiomatizable ?
(c) Isthetheory T consistent ?

A sat G of formulasisalgorithmically decidable if there is an agorithm
which can determine whether or not an arbitrary sentence sis in G.
Thistells us what it means for a theory to be algorithmically decidable,
We say that atheory T is axiomatizable if there is a agorithmicaly
decidable set G of formulas such that T = Conseq(G). Usualy we have a
forma deductive system for the underlying logic and augment it with G.
If the underlying logic is sufficiently nice (and al three of the logics we
will discuss, are) we get aformal deductive system S; such that si T if
and only if sisderivablein S;.

A formal deductive system (F.D.S) S consists of the language of
a logic, an agorithmically decidable set A(S) of sentences cdled the
axioms, and a finite set R(S) of rules of inferences. The axiomsare
certain carefully selected formulas which are usualy obvioudly true in
some intended interpretation of the language of the logic. A rule of
inference is arule that is usudly true in al intended interpretations and
gpecifies that one formula (called the conclusion) can be deduced from a
finite set of formulas (called the hypotheses). A sentence s isderivable
in Sif thereisasequence sy, Sy, . . ., Sy, =S such that each s; isether
an axiom or is deducible by arule of inference from previous sj'sin this
sequence.

The axioms of A(S) are usually divided into two parts - the
logical axioms LA(S) (which axiomatizes the underlying logic and does
not change with the theory) and the proper axioms PA(S) (which
congsts of the remaining axioms of A(S) and varies with the theory).



The set R(S) of rules of inferenceis part of the underlying logic because
It does not change with the theory.

Once we know that a theory is axiomatizable, the second
guestion can be further refined. IsT finitely axiomatizable (i.e., isthere
aF.D.S. for T with afinite set of proper axioms)? IsT n-axiomatizable
(i.e, isthere aF.D.S. for T with a set of n proper axioms)? This latter
question only makes sense for equational theories because any
propositiona or first-order theory which isfinitely axiomatizable will be
l-axiomatizable. We just have to take a conjunction of the finitely
many proper axioms to get one proper axiom.

A theory T is consstent if it does not consst of al possble
sentences in the language of T. In the propositional and first-order logic
a theory T is usually said to be 'in-consistent” if it contains both a
sentence and its negation. It can be shown that when this happens T
must contain al possible sentences, because T is closed under logical
consequences. A theory T issaid to be maximal if it is consastent and
there is no consstent theory which properly contains T.  In the
propositiona and first-order logic, a theory T is usualy said to be
"maximal" if for each sentence s, either s T or =sl T. It can be shown
that when this happens there is no consistent theory which properly
containsT.

2. Threelogics.

We shdll first introduce propositional logic (PL). The aphabet of
PL consistsof:

(a) connectives: A (falsum), ® (conditiond)
(b) auxiliary symbols.  (,) (parentheses)
(c) relation symbols: Poi (kI I)

Here | is an indexing set which is usualy taken to be the set of natura
numbers N, but it can be anything including the empty set.  Strictly
speaking there are severa propositional logics because the set of
relation symbols may vary - but this does not change things very much.
The set of relation symbols is referred to as the proper part of the
adphabet. Falsum is a O-ary connective and the conditional is a binary



connective. For each il I, Py is a O-ary relation symbol. The
parentheses are just used for punctuation.

The formulas of PL are defined recursively asfollows:

1. ™ and each Py; are formulas

2. ifaand Bareformulas, then sois (a® 3).

3. aisaformulaif and only if it can be obtained from
1 by afinite number of applications of step 2.

We shall refer to the formulas of PL as complex propositions. The other
connectives can be introduced as abbreviations for easer
comprehension and readability.

negation: (a® ") abbreviates (—a)
digunction: (-a® R) abbreviates (allR)

conjunction: ~(~aUAR) abbreviates (aUR)
biconditional: (a® R)YR® a) abbreviates (a« R)

The intended meaning of is"*" is the O-ary connective which is
adways fase. For al practical purposes "" can be taken to be the
constant proposition which is adways fase. """ will then be the
constant proposition which is aways true and is caled verum and
abbreviated as" ". (a® ) has the usua meaning of "aimplies 3" -itis
faseif and only if aistrueand Bisfalse.

The O-ary relation symbols R; are to be interpreted as O-ary
relations. An nay relaion on a structure with domain A is just a
subset of A". Here A" isthe set of al sequences of length n. A° consists
of asingle element - the empty sequence ?, i.e, A’ ={?}. So aCary
relation on A will ether be A or {?}. We interpret A as the rdation
being false and {7} asit being true. So aO-ary relation is elther true or
false when interpreted over a structure - in other words it acts just asthe
usua proposition variable. We have formulated propositiona logic in
thisway so that it becomes a sub-logic of first-order logic.

Let T, be the set of all complex propositions that are logical
consequences of the empty set /£ of complex propositions. The
member of Ty are usudly called tautologies. It haslong be known that



Tp isagorithmically decidable. Theusua truth-table method provides
a ample agorithm to determine whether or not a formula is in Tp,.
The sameistrueif we replace A by a finite set of complex propositions
H to get the propositional theory Ty (H). A natural question is what
happens when H isinfinite? Here, as the reader may expect, the answer
IS in the negative.

There are also severa elegant formal deductive systems for Tp,.
One F.D.S. has three axioms and two rules of inference - substitution
and modus ponens. Another has three axiom schemas (and thus an
infinite number of axioms) and only modus ponens as the rule of
inference. (See Mendelson [1997] for these and others.) If wewrite s
to mean that s is a logical consequence of the empty set of sentences
and _sto mean that sis derivable in one of the F.D.S. above, then it can
be shown that s if and only if _s. This is called the completeness
theorem for propositiond logic. So, anyway, Ty, isaxiomatizable. Itis
aso consistent (the sentence ~ is not in Tp) but not maximal (neither
Po1nor =Pgy;isin Tpy).

Next we will discuss first-order logic (FL). The aphabet of FL
consistsof:

(@) connectives: N ®

(b) universal quantifier )

(c) equality symbol: =

(d) auxiliary symbols: G),""

(e) individual variables: X< (KI N)

(f) relation symbols: P, (nil 1)
() function symboals; foj (N1 J).

Here |, and J, are indexing sets which are usually taken to be N, but
they can be anything including the empty set. Strictly spesking there
are severd first-order logics because the set of relation symbols and
function symbols, which are referred to as the proper part of the
aphabet, may vary - but this does not change things very much. We
alow the relation symbols and function symbols to be of any arity r? 0.
The comma"," is an auxiliary symbol to help with punctuation.



First we definetheterms of FL. A termis defined recursively as
follows:

1. Foreach ki N and eachji J, x, and f,; are terms.

2. If Blandt,... t, are terms then so is fy(ty,....1).

3. tisatermif and only if it can be obtained from 1
by afinite number of applications of step 2.

The formulas of FL are defined recursively as follows:

1. ~ and each Py; are formulas.
2. If t; and t; are terms then (t;=t,) isaformula.
3. If P1landt,....t, are terms, then Py(ty,...,t,)
isaformula
4. If aand R areformulas, then so are (a® 3) and ((" x,)a).
5. aisaformulaif and only if it can be obtained from
1, 2 & 3 by afinite number of applications of step 4.

The existential quantifier and the other connectives from PL can be
introduced as abbreviations for easer comprehension and readability.

existential quantifier: ($a) abbreviates =((" x,)(—a))

The O-ary function symbols fy; are to be interpreted as O-ary
functions. A O-ary function f on A isjust afunction from A’={? to A.
Since f is completely determined by f(?), f is basicaly an individual
congtant from A. The intended meaning of (" x)awhen interpreted in a
structure with domain A is "for al x. in A, aholds'. If the variable x
does not occur in a, then (" x,)a and a have the same meaning. In first-
order logic the equality symbols aways has to be interpreted as the
identity relation on A.

Let Tr. be the set of al sentences of FL that are logical
consequences of the empty set of sentences. Thenitiswell known that
Tr isnot agorithmically decidable. Thisis essentialy what makes the
task of finding "proofs' in ordinary mathematics rather difficult for
beginning students. There are however severa el egant formal deductive
systemsfor Tg.. One F.D.S. has seven axiom schemas and two rules of
inference - generalization and modus ponens. (See Mendelson [1997]



for more details.) With the F.D.S. mentioned above, it can be shown
that _sif andonly if _s. Thisiscalled the Godd completeness theorem
for first-order logic. Anyway, Tr isaxiomatizable. It isaso consstent
(the sentence ” is not in Tg) but not complete (neither B, ; nor =Py ; is
iNnTg).

Finaly we shall discuss equational logic (EL). The alphabet of
EL consstsof:

(a) equality symbol: =

(b) auxiliary symbols: G),""

(c) individual variables: X« (K N)

(d) function symbols: foj (N1 J)

The symbols here have al been mentioned above in connection with
FL. The terms of EL are defined in the same way as in FL. The
formulas of FL are defined smply as the set of al expressions of the
form (t:=t,), wheret; and t, areterms. We shall refer to the formulas of
EL as equationsor identities The only difference between EL and FL
isin the way in which we interpret the equality symbol. We consider an
equation of EL to be true in a structure with domain A if it istrue for dl
vaues of the variables involved in the equation. We can view an
equation of EL as formulas of FL by prefacing it by universa
quantifiers with each of the variable involved in the equation.

Let Ty bethe set of all equationsthat arelogical consequences of
the empty set /& of equations. Then Tg_ is agorithmically decidable.
(In fact Tg isredly atrivia theory. It consists of al equations of the
form (t=t) where t is an arbitrary term of EL.) The same thing is not
aways true, however, if we replace A by a finite set of equations H to
get the equationa theory Tg (H). It has been shown by Tarski [1953]
that there is a finite set H of equations such that Tg (H) is not
algorithmically decidable. In the next section we will present a formal
deductive system for equationa theories and discuss this matter further
later. In passing we would like to mention that Tg, is consistent (Xo=X;
Isnot in Tg ) and that it is not maximal, aslong as the proper part of the
aphabet is nonttrivial. It is, in fact, minimal - this means that it is
contained in all other equationa theories.



3. A formal deductive system for equational theories.

Theonly logicd axiomis: Al X=X, (identity axiom)
The proper axioms will depend on the theory in question.

The rules of inference are as follows:

R1. From s=t, deduce t=s. (symmetry rule)
R2. From r=s and s=t, deduce r=t. (trangtivity rule)
R3. From s=ty, . . ., S=t, deduce,
fok(Sese-0Sh) = fak(tyyeot)- (replacement rule)
R4. From r(Xy,...,Xn) = S(X4,...,X,) deduce,
r(ty,....t) = Sty,....t) (substitution rule)

We can replace the two rules R1 and R2 by one rule R5.
R5. From r=sand s=t, deduce t=r. (circularity rule)

Let us look a some agebraic structures to see how this F.D.S.
actually works. The proper part of the aphabet of the theory of groups
of Tgr cONSSts of:

(8 abinary function symbol: . (multiplication)
(b) aunary function symbol: ' (inverse)
(c) aC-ary function symbol: e (identity element).

The proper axioms of Tgr are:

Gl (xy).z=x.y.2 (associativity)
G2. x.e=x (right identity)
G3. xx'=e (right inverse)

Here we have taken X, y, z as variable instead of X, X, X3 tO
smplify the expressions. A group is any structure &,.,",éiin which
G1-G3 are satisfied. A semi-group isany structure @A,.Ainwhich G1 is
satisfied. A groupoid isjust astructure &\,.fin which no equations are
required to be satisfied. The theory of groups Tk is the set of al
equations that are logical consequences of Ggr = {G1,G2,G3}.

It can be shown that an equation s is a logical consequence of
Ger If and only if sis derivable in our F.D.S above supplemented with



Gsr s proper axioms. This is redly saying that Gr_sif and only if
Gsr S This result is true if we replace Gyg by an arbitrary set G of
equations and it is known as the Birkhoff completeness theorem for
equationa logic. G is often referred to as a base of the theory

Conseq(G).

We will illustrate the concept of a deduction by considering the
following questions:

Ql. Is xX'x =x trueinall groups ?
Q2. 1s ex =x trueinal groups ?

As the reader knows very well, both questions can be answered in the
affirmative. We will provide deductions of these two equations from
Gsr. Bdow isadeductionof x'x=e

1. xX'x=(XXx).e G2

2. X'X=XXX).[XX).xXT] G3

3 XXxX=[(XX).XX].xx) G1

4, X'x=[{(x'x)x}x.x'x) Gl

5 xX'x=[{x.xx)}x.xx) G1

6. X'x=[{x.€ X].(X'X)' G3

7. XX =[XX].(X'X)' G2

8 xX'Xx=e Gl

In the above deduction we introduced [] and {} for ease of readability.
Using this deduction, we next give a deduction of ex = X.

1. ex=(XX)X G3
2. ex=x.(X'Xx) Gl
3. ex=x.e previous deduction

4, ex=x G2

A careful reader would have noticed that we formulated the
equationa theory of groups in an aphabet which alowed us to express
the three group axioms as identities. If the proper part of the alphabet
consisted only of the binary function symbol "." we would not have
been ableto do this. The vast mgority of algebraic structures allows us
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to study their equationa theories, although a little unorthodoxy may be
involved in afew cases. These structures include semi-groups, quasi-
groups, abelian groups, rings, rings with identity, commutative rings,
|attices and Boolean algebras. By viewing scalar multiplication by each
element of afield or ring with identity as a separate unary function, the
same can be said for vector spaces over afixed field and unital modules
over a fixed ring with identity. The theory of fields or divison rings
cannot, however, be cast as equational theories - unless you redly go
against normal practices.

4. Finitely axiomatizable theories.

An equationd theory is said to be finitely axiomatizable if thereis
afinite sat G of eguations such that T = Conseq(G). For the rest of this
article al the theories mentioned will be equational theories with
finitely many function symbols. So al of our theories will have a
countable base. Finitely axiomatizable theories are often referred to as
finitely based because the base G isfinite. Thereare, of course, theories
that are not finitely based - but most naturaly formulated heories are
finitely based. For any finite structure S, the theory Th(S) is obvioudy
finitely based. And if atheory T, such as group theory, is defined by T
= Cons(G) where G isfinite - it is de facto finitely based.

An interesting example of a non-finitely based theory is Th(G)
where G={0,1,2} is the Lyndon groupoid with the binary operation
defined below:

. 012

N O
O oo
N OO
N~ O

Since G is not finitely based this means that there is no finite set of
equations which can generate dl the equations that are satisfied by this
groupoid. Another more natural example is Th(P) where P is the
Perkins semi-group which consists of the six 2x2 matrices shown below
under matrix multiplication.
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00 10 10 01 00
00
00 01 00 00 10
01

A find very interesting example is Th(HA) where HA is the "high
school agebra" structure &,+,.,- i with - being exponentiation.

A theory is said to be one-based if it has a base which consists of
one equation. It was shown by McKenzie [1970] that the theory of
lattices was is one-based - his original proof yielded an equation with 34
variables and of length about 300,000. (The author was tempted to put
an exclamation mark after the 300,000 - but that might make the length
appear to be even bigger than it really was!) Padmanabhan has reduced
it to a formulainvolving 7 variable and of length about 300. Gratzer,
McKenzie & Tarski aso showed that the theory of Boolean algebras
was one-based (Gratzer [1971]). Neither of these proofs were easy and
the single equations were not particularly revealing.

All two element groupoids can be divided into seven classes such
that any two groupoid in the same class are isomorphic or dual-
isomorphic. Five of the classes have theories that are one-based and the
remaining two, whose representatives are § 0,1}, Ufiand § 0,1} ® fj have
been shown by Potts [1965] to be twobased. Here 0 and 1 are
considered as the truth values "false” and "true’ and Uand ® have their
usua meaning from propositiona logic.

A baseissaid to be irredundant if no proper subset of it isabase.
It is alittle surprising that a single theory can have irredundant bases
with different cardinalities - so there is no concept such as the
"dimension" of atheory. (But not very surprising because the cyclic
group of 6 elements can have a set consisting of one generator or a set
consisting of two generators,) It can be shown, however, that every
irredundant base of a finitely based theory must have finite cardinality.
There is a beautiful result of Tarski [1968] that says that the possible
values of the cardindities of the irredundant bases of a finitely based
non-trivial theory is either a finite or an infinite interval of positive
integers, i.e, ether [m,n] or [m,?). Here ?isthe firs infinite cardinal
and is better known as aeph-null. The trivial theory congsting of al
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tautologica identities has the empty set as a base and thus an
Irredundant base of cardinality O.

For non-finitely based theories there are two possibilities. thereis
either an irredundant base of cardinality ? or there is no irredundant
base. In the latter case this means that every base has a proper infinite
subset which is aso a base. No mathematicaly interesting theory
without irredundant bases have been found so far and it would be
interesting to know if there is an infinite group G such that Th(G) has no
irredundant base. If atheory has an infinite irredundant base G it will
automatically have 2 many different sub-theories because there are 2°
infinite subsets of G and each subset will produce a different sub-theory.
The same may not be true for theories with no irredundant base. The
most we can say at thispoint isthat it will have at least ? many different
ub-theories.

5. Decison problems.

A decision problem can be characterized as a problem in which

there are an infinite number of inputs and for each input thereisa YES
or NO answer. Also each input must be finitely specifiable so there will
be a denumerable number of inputs. A typical decision problem isthe
primality problem:
Given an arbitrary number n, can we tdl if it is prime? Here the inputs
are natura numbers and are usudly presented in base 10 as a finite
string of digits. We say that a decision problem is algorithmically
solvable if there is a single algorithm which when given the input
computes the correct answer in a finite number of steps. It is well
known that the primality problem is agorithmicaly solvable. We just
have to check if n isdivisible by some prime £ éOnl

The halting problem is as follows. Given an arbitrary Turing
machine, can wetdl if it will halt when started on the blank tape ? It is
the standard example of a decision problem which is not agorithmically
solvable and many decisions problems are shown to be algorithmicaly
unsolvable by showing that an affirmative answer would result in the
halting problem being algorithmically solvable.
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We now turn our attention to decision problems in equational
logic. But before doing this we recal that Tarski [1953] showed that
thereisafinite set H of equations such that the theory T, = Conseq(H)
Is not algorithmically decidable. This means that the decision problem
for Ty is not agorithmicaly solvable, i.e, there is no agorithm which
can tell usif an arbitrary equation sisin Ty or not. (By the way the
decison problems for most equationa theories, such as group theory
and ring theory, are adgorithmicaly solvable) Beow are some
examples of algorithmicdly unsolvable decison problems. In
everything that follows G will be an arbitrary finite set of equations

U1. Isthe theory Conseg(G) consistent ?

U2. Isthe theory Conseg(G) maximal ?

U3. Isthe theory Conseq(G) one-based ?

U4. Isthe theory Conseq(G) agorithmically decidable?
US. Is G abase for the theory of groups?

UG. Is G abase for the theory of Boolean algebras

Problem U1 is equivalent to asking if the equation x=y is derivable
from G, because the equation x=y is abase for the inconsistent theory
which conssts of al possible equations.

Not al the problems of these types are dgorithmicaly
unsolvable. Below are some other examples of agorithmically solvable
decision problems.

S1. For an arbitrary finite Sructure A, is Th(A) maxima ?
2. IsG abase for the theory of commutative groupoids?
S3. Isthe theory Conseq(G+G1) consstent ?

Here G1 is the associative rule from group theory. A commutative
groupoid isone which satisfiesx.y = y.Xx .

In connection with problem U6, we would like to mention the
Robbins conjecture. A more complete discussion is given in Cipra
[1999] and McCune and Padmanabhan [1996]. Robbins conjecture
asks if the following three equations form a base for the theory of
Boolean algebras.

1. xUy = yUx (commuitativity)
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2. XUy _2z) = (xUy)Uz (associativity)
3. (xUy)_(xUy)) =x (Robbins axiom)

This problem was open for 63 years until McCune, building on the work
of others, recently obtained a solution from his automated theorem
prover (a computer program caled EQP). Note the agorithmic
unsolvability of U6 only means that there is no agorithm which can
solve all problems of the format of Robbins conjecture - it did not mean
that Robbins conjecture could not be settled. What isremarkable hereis
that this seemingly simple problem defied the efforts of some of the best
mathematicians but succumbed to the brute force of a computer. But
that is not the complete story - there was a human being who wrote the
program with the aid of expertsin equational logic such as S. Burris and
R. Padmanabhan. And here | abruptly end my tae for it has gotten
much too long!
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