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ABSTRACT 
 
 
 
 
  Equational logic is a formalization of the deductive methods 
encountered in studying the set of all equations that can be derived from 
a given fixed set of equations.  So it is naturally associated with abstract 
algebraic structures.  The equations involved are interpreted as being 
true for all the variables involved and so are best thought of as identities.  
In complexity, equational logic sits somewhere between propositional 
and first-order logic.  And even though it may appear simple at first 
sight, many of the problems are very interesting and non-trivial.  Several 
are actually quite difficult and some are still open.  In this exposition our 
goal is to introduce equational logic in an informal way as a bridge from 
the propositional logic to the first-order logic and contrast it with them. 
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 1. Introduction. 
 
 Equational logic is often referred to as universal algebra  because 
of its  natural association with abstract algebraic structures but this is not 
the view we shall take here.  We shall view it as a logic and accordingly 
begin by giving a general outline of what is a logic.  There is a large 
body of work on equational logic and we refer the reader to the very 
comprehensive survey by Taylor [1979], even though it may be a little 
dated.  Our goal is to show how equational logic can be use to motivate 
the study of first-order logic and model theory.  Along the way we shall 
present a few interesting problems as they arise, including the resolution 
of the famous Robbins conjecture by an automated theorem prover. 
 
 A logic consists of an alphabet of symbols, a syntax and a 
semantics.  It is similar in many ways to a written language and can, in 
fact, be considered a written language.  The symbols in the alphabet are 
called letters and the syntax specifies the way in which these letters are 
used to construct formulas.  The syntax has to be such there is an 
algorithm to determine in a finite number of steps whether or not an 
arbitrary finite string of letters is a formula.  The set of all formulas is 
called the language of the logic.  The semantics specifies the intended 
meaning of the formulas by interpreting the language in a structure.  A 
structure consists of a set A (called the domain of the structure) together 
with certain relations and functions on A of various arities.  The arity is 
the number of variables involved in the relation or function. 
 
 A sentence is a formula with no free variables.  In propositional 
and equational logic all formulas are sentences.  In first-order logic, 
(∃x)(∀x)(x+y = x-y) is a sentence but (∃x)(x.y = x+y) is not.  Let G be a 
set of sentences and ? be a given sentence.  We say that ? is a logical 
consequence of G if ? is true in all structures in which all the sentences 
of G are true.  
 
 A theory is a set T of sentences, in some underlying logic, which 
is closed under logical consequences (i.e., if ? is a logical consequence 
of T, them ? must be in T).  If the underlying logic is equational logic 
(propositional or first-order logic), then we will call the theory an 
equational theory (propositional and first-order theory, respectively). 
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There are two basic ways of specifying theories.  If G is any set of 
sentences, we can get a theory by letting T be the set of all logical 
consequences of G and we will write this as T = Conseq(G).  We can 
also get a theory by letting T be the set of all sentences that are true in a 
fixed structure A or in every member of a whole class of structures 
{A:A∈C}.  We will write this as  T=Th(A) or as T=Th({A:A∈C})  
  
 There are three basic questions about theories. 
 
  (a) Is the theory T algorithmically decidable ?    
  (b) Is the theory T axiomatizable ? 
  (c) Is the theory T consistent ? 
 
A  set G of formulas is algorithmically decidable if there is an algorithm 
which can determine whether or not an arbitrary sentence s is in G.  
This tells us what it means for a theory to be algorithmically decidable.  
We say that a theory T is axiomatizable if there is a algorithmically 
decidable set G of formulas such that T = Conseq(G).  Usually we have a 
formal deductive system for the underlying logic and augment it with G.  
If the underlying logic is sufficiently nice (and all three of the logics we 
will discuss, are) we get a formal deductive system ST such that s∈T if 
and only if s is derivable in ST.   
 
 A formal deductive system (F.D.S.)  S consists of the language of 
a logic, an algorithmically decidable set A(S) of sentences called the 
axioms, and a finite set R(S) of rules of inferences.   The axioms are 
certain carefully selected formulas which are usually obviously true in 
some intended interpretation of the language of the logic.   A rule of 
inference is a rule that is usually true in all intended interpretations and 
specifies that one formula (called the conclusion) can be deduced from a 
finite set of formulas (called the hypotheses).   A sentence s is derivable 
in S if there is a sequence s1, s 2, . . . , s n = s  such that each s i is either 
an axiom or is deducible by a rule of inference from previous s j's in this 
sequence.   
 
 The axioms of A(S) are usually divided into two parts - the 
logical axioms LA(S) (which axiomatizes the underlying logic and does 
not change with the theory) and the proper axioms PA(S) (which 
consists of the remaining axioms of A(S) and varies with the theory).  
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The set R(S) of rules of inference is part of the underlying logic because 
it does not change with the theory. 
   
 Once we know that a theory is axiomatizable, the second 
question can be further refined.  Is T finitely axiomatizable (i.e., is there 
a F.D.S. for T with a finite set of proper axioms)?  Is T n-axiomatizable 
(i.e., is there a F.D.S. for T with a set of n proper axioms)?  This latter 
question only makes sense for equational theories because any 
propositional or first-order theory which is finitely axiomatizable will be 
1-axiomatizable.  We just have to take a conjunction of the finitely 
many proper axioms to get one proper axiom. 
 
 A theory T is consistent if it does not consist of all possible 
sentences in the language of T.  In the propositional and first-order logic 
a theory T is usually said to be "in-consistent" if it contains both a 
sentence and its negation.  It can be shown that when this happens T 
must contain all possible sentences, because T is closed under logical 
consequences.   A theory T is said to be maximal if it is consistent and 
there is no consistent theory which properly contains T.   In the  
propositional and first-order logic, a theory T is usually said to be 
"maximal" if for each sentence s, either s∈T or ¬s∈T.  It can be shown 
that when this happens there is no consistent theory which properly 
contains T.  
 
2. Three logics. 
 
 We shall first introduce propositional logic (PL).  The alphabet of 
PL consists of: 
 
 (a) connectives:    ⊥ (falsum), → (conditional)  
 (b) auxiliary symbols: (, ) (parentheses) 
 (c) relation symbols:   P0,i  (k∈I) 
 
Here I is an indexing set which is usually taken to be the set of natural 
numbers N, but it can be anything including the empty set.  Strictly 
speaking there are several propositional logics because the set of 
relation symbols may vary - but this does not change things very much.   
The set of relation symbols is referred to as the proper part of the 
alphabet.  Falsum is a 0-ary connective and the conditional is a binary 
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connective.  For each i∈I, P0,i is a 0-ary relation symbol.  The 
parentheses are just used for punctuation.   
 
 The formulas of PL are defined recursively as follows: 
 
 1.  ⊥ and each P0,i are formulas 
 2.  if a and ß are formulas, then so is (a→ß). 
 3.  a is a formula if and only if it can be obtained from 
     1 by a finite number of applications of step 2. 
 
We shall refer to the formulas of PL as complex propositions.  The other 
connectives can be introduced as abbreviations for easier 
comprehension and readability.     
 
 negation:   (a→⊥) abbreviates (¬a) 
 disjunction:  (¬a→ß) abbreviates (a∨ß) 
 conjunction:  ¬(¬a∨¬ß) abbreviates (a ∧ß) 
 biconditional:  (a→ß)∧(ß→a) abbreviates (a↔ß) 
 
  The intended meaning of is "⊥" is the 0-ary connective which is 
always false.  For all practical purposes "⊥" can be taken to be the 
constant proposition which is always false.  "¬⊥" will then be the 
constant proposition which is always true and is called verum and 
abbreviated as "_".  (a →ß) has the usual meaning of "a implies ß" - it is 
false if and only if a is true and ß is false. 
 
 The 0-ary relation symbols P0,i are to be interpreted as 0-ary 
relations.   An n-ary relation on a structure with domain A is just a 
subset of An.  Here An is the set of all sequences of length n.  A0 consists 
of a single element - the empty sequence ?, i.e., A0 = {?}.  So a 0-ary 
relation on A will either be ∅ or {?}.  We interpret ∅ as the relation 
being false and {?} as it being true.  So a 0-ary relation is either true or 
false when interpreted over a structure - in other words it acts just as the 
usual proposition variable.   We have formulated propositional logic in 
this way so that it becomes a sub-logic of first-order logic.   
 
 Let TPL be the set of all complex propositions that are logical 
consequences of the empty set ∅ of complex propositions.  The 
member of TPL are usually called tautologies.  It has long be known that 
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TPL is algorithmically decidable.  The usual truth-table method provides 
a simple algorithm to determine whether or not a formula is in TPL.   
The same is true if we replace ∅ by a finite set of complex propositions 
H to get the propositional theory TPL(H).  A natural question is what 
happens when H is infinite?  Here, as the reader may expect, the answer 
is in the negative.   
 
 There are also several elegant formal deductive systems for TPL.  
One F.D.S. has three axioms and two rules of inference - substitution 
and modus ponens.  Another has three axiom schemas (and thus an 
infinite number of axioms) and only modus ponens as the rule of 
inference.  (See Mendelson [1997] for these and others.)  If we write _s 
to mean that s is a logical consequence of the empty set of sentences 
and _s to mean that s is derivable in one of the F.D.S. above, then it can 
be shown that _s if and only if _s.  This is called the completeness 
theorem for propositional logic.  So, anyway, TPL is axiomatizable.  It is 
also consistent (the sentence ⊥ is not in TPL) but not maximal (neither 
P0,1 nor ¬P0,1 is in TPL).   
 
 Next we will discuss first-order logic (FL).  The alphabet of FL 
consists of: 
 
 (a) connectives:      ⊥, →   
 (b) universal quantifier   ∀ 
 (c) equality symbol:   = 
 (d) auxiliary symbols:    (, ), ","  
 (e) individual variables:  xk    (k∈N) 
 (f) relation symbols:    Pn,i  (n,i∈In) 
 (g) function symbols:    fn,j  (n,j∈Jn). 
 
Here In and Jn are indexing sets which are usually taken to be N, but 
they can be anything including the empty set.  Strictly speaking there 
are several first-order logics because the set of relation symbols and 
function symbols, which are referred to as the proper part of the 
alphabet,  may vary - but this does not change things very much.  We 
allow the relation symbols and function symbols to be of any arity n≥0.  
The comma "," is an auxiliary symbol to help with punctuation.   
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 First we define the terms of FL.  A term is defined recursively as 
follows: 
 
1.  For each k∈N and each j∈J0, xk and f0,j are terms. 
2.  If n≥1 and t1,...,tn are terms then so is fn,j(t1,...,tn). 
3.  t is a term if and only if it can be obtained from 1 
    by a finite number of applications of step 2. 
  
The formulas of FL are defined recursively as follows: 
 
1.  ⊥ and each P0,i are formulas. 
2.  If t1 and t2 are terms then (t1=t2) is a formula.  
3.  If n≥1 and t1,...,tn are terms, then Pn,i(t1,...,tn) 
    is a formula.  
4.  If a and ß are formulas, then so are (a→ß) and ((∀xk)a). 
5.  a is a formula if and only if it can be obtained from   
    1, 2 & 3 by a finite number of applications of step 4. 
 
The existential quantifier and the other connectives from PL can be 
introduced as abbreviations for easier comprehension and readability. 
     
 existential quantifier: (∃a) abbreviates ¬((∀xk)(¬a)) 
 
 The 0-ary function symbols f0,j are to be interpreted as 0-ary 
functions.  A 0-ary function f on A is just a function from A0={?} to A.  
Since f is completely determined by f(?), f is basically an individual 
constant from A.  The intended meaning of (∀xk)a when interpreted in a 
structure with domain A is "for all xk in A, a holds".  If the variable xk 
does not occur in a, then (∀xk)a and a have the same meaning.  In first-
order logic the equality symbols always has to be interpreted as the 
identity relation on A. 
         
 Let TFL be the set of all sentences of FL that are logical 
consequences of the empty set of sentences.   Then it is well known that 
TFL is not algorithmically decidable.  This is essentially what makes the 
task of finding "proofs" in ordinary mathematics rather difficult for 
beginning students.  There are however several elegant formal deductive 
systems for TFL.  One F.D.S. has seven axiom schemas and two rules of 
inference - generalization and modus ponens.  (See Mendelson [1997] 
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for more details.)  With the F.D.S. mentioned above, it can be shown 
that _s if and only if _s.  This is called the Godel completeness theorem 
for first-order logic.  Anyway, TFL is axiomatizable.  It is also consistent 
(the sentence ⊥ is not in TFL) but not complete (neither P0,1 nor ¬P0,1 is 
in TFL). 
       
 Finally we shall discuss equational logic (EL).  The alphabet of 
EL consists of:  
 
 (a) equality symbol:   = 
 (b) auxiliary symbols:    (, ), ","  
 (c) individual variables:  xk    (k∈N) 
 (d) function symbols:    fn,j  (n,j∈Jn) 
 
The symbols here have all been mentioned above in connection with 
FL.  The terms of EL are defined in the same way as in FL.  The 
formulas of FL are defined simply as the set of all expressions of the 
form (t1=t2), where t1 and t2 are terms.  We  shall refer to the formulas of 
EL as equations or identities.  The only difference between EL and FL 
is in the way in which we interpret the equality symbol.  We consider an 
equation of EL to be true in a structure with domain A if it is true for all 
values of the variables involved in the equation.  We can view an 
equation of EL as formulas of FL by prefacing it by universal 
quantifiers with each of the variable involved in the equation. 
 
 Let TEL be the set of all equations that are logical consequences of 
the empty set ∅ of equations.  Then TEL is algorithmically decidable.  
(In fact TEL is really a trivial theory.  It consists of all equations of the 
form (t=t) where t is an arbitrary term of EL.)  The same thing is  not 
always true, however, if we replace ∅ by a finite set of equations H to 
get the equational theory TEL(H).  It has been shown by Tarski [1953] 
that there is a finite set H of equations such that TEL(H) is not 
algorithmically decidable.  In the next section we will present a formal 
deductive system for equational theories and discuss this matter further 
later.  In passing we would like to mention that TEL is consistent (x0=x1 
is not in TEL) and that it is not maximal, as long as the proper part of the 
alphabet is non-trivial.  It is, in fact, minimal - this means that it is 
contained in all other equational theories.    
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3. A formal deductive system for equational theories. 
 
 The only logical axiom is:    A1. x0=x0  (identity axiom) 
The proper axioms will depend on the theory in question. 
 
 The rules of inference are as follows: 
R1. From s=t, deduce t=s.   (symmetry rule) 
R2. From r=s and s=t, deduce r=t.   (transitivity rule) 
R3. From s1=t1, . . ., sn=tn deduce, 
    fn,k(s1,...,sn) = fn,k(t1,...,tn).   (replacement rule) 
R4. From r(x1,...,xn) = s(x1,...,xn) deduce,  
    r(t1,...,tn) = s(t1,...,tn)       (substitution rule) 
 
We can replace the two rules R1 and R2 by one rule R5. 
R5.  From r=s and s=t, deduce t=r.  (circularity rule) 
 
 
 Let us look at some algebraic structures to see how this F.D.S. 
actually works.  The proper part of the alphabet of the theory of groups 
of TGR consists of: 
 
 (a) a binary function symbol:  .    (multiplication) 
 (b) a unary function symbol:   '    (inverse) 
 (c) a 0-ary function symbol:   e    (identity element). 
 
The proper axioms of TGR are: 
 
 G1.  (x.y).z = x.(y.z)   (associativity) 
 G2.  x.e = x     (right identity) 
 G3.  x.x' = e     (right inverse) 
 
 Here we have taken x, y, z as variable instead of x1, x2, x3  to 
simplify the expressions.   A group is any structure 〈A,.,',e〉 in which 
G1-G3 are satisfied.  A semi-group is any structure 〈A,.〉 in which G1  is 
satisfied.  A groupoid  is just a structure 〈A,.〉 in which no equations are 
required to be satisfied.  The theory of groups TGR is the set of all 
equations that are logical consequences of GGR = {G1,G2,G3}.   
 It can be shown that an equation s is a logical consequence of 
GGR if and only if s is derivable in our F.D.S above supplemented with 
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GGR as proper axioms.  This is really saying that GGR_s if and only if 
GGR_s.  This result is true if we replace GGR by an arbitrary set G of 
equations and it is known as the Birkhoff completeness theorem for 
equational logic.  G is often referred to as a base of the theory 
Conseq(G). 
 
 We will illustrate the concept of a deduction by considering the 
following questions: 
 
 Q1. Is  x'.x = x  true in all groups ? 
 Q2. Is  e.x = x  true in all groups ?   
 
As the reader knows very well, both questions can be answered in the 
affirmative.  We will provide deductions of these two equations from 
GGR.  Below is a deduction of  x'.x = e. 
 
 1.   x'.x = (x'.x).e    G2 
 2.   x'.x = (x'.x).[(x'.x).(x'.x)'] G3  
 3.   x'.x = [(x'.x).(x'.x)].(x'.x)' G1 
 4.   x'.x = [{(x'.x).x'}.x].(x'.x)' G1 
 5.   x'.x = [{x'.(x.x')}.x].(x'.x)' G1 
 6.   x'.x = [{x'.e}.x].(x'.x)'  G3 
 7.   x'.x = [x'.x].(x'.x)'   G2 
 8.   x'.x = e      G1 
 
 
In the above deduction we introduced [] and {} for ease of readability.  
Using this deduction, we next give a deduction of e.x = x. 
 
 1.   e.x = (x.x').x     G3 
 2.   e.x = x.(x'.x)     G1 
 3.   e.x = x.e   previous deduction   
 4.   e.x = x      G2  
 
 A careful reader would have noticed that we formulated the 
equational theory of groups in an alphabet which allowed us to express 
the three group axioms as identities.  If the proper part of the alphabet 
consisted only of the binary function symbol "." we would not have 
been able to do this.   The vast majority of algebraic structures allows us 
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to study their equational theories, although a little unorthodoxy may be 
involved in a few cases.  These structures include semi-groups, quasi-
groups, abelian groups, rings, rings with identity, commutative rings, 
lattices and Boolean algebras.  By viewing scalar multiplication by each 
element of a field or ring with identity as a separate unary function, the 
same can be said for vector spaces over a fixed field and unital modules 
over a fixed ring with identity.  The theory of fields or division rings 
cannot, however, be cast as equational theories - unless you really go 
against normal practices. 
  
4. Finitely axiomatizable theories.  
 
 An equational theory is said to be finitely axiomatizable if there is 
a finite set G of equations such that T = Conseq(G).  For the rest of this 
article all the theories mentioned will be equational theories with 
finitely many function symbols.   So all of our theories will have a 
countable base.  Finitely axiomatizable theories are often referred to as 
finitely based because the base G is finite.  There are, of course, theories 
that are not finitely based - but most naturally formulated theories are 
finitely based.  For any finite structure S, the theory Th(S) is obviously 
finitely based.  And if a theory T, such as group theory, is defined by T 
= Conseq(G) where G is finite - it is de facto finitely based. 
 
 An interesting example of a non-finitely based theory is Th(G) 
where G={0,1,2} is the Lyndon groupoid with the binary operation 
defined below: 
         .   0   1   2 
 
          0   0   0   0 
         1   0   0   1 
         2   0   2   2 
 
Since G is not finitely based this means that there is no finite set of 
equations which can generate all the equations that are satisfied by this 
groupoid.  Another more natural example is Th(P) where P is the 
Perkins semi-group which consists of the six 2x2 matrices shown below 
under matrix multiplication.  
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 0 0  1 0  1 0  0 1  0 0 
 0 0   
 0 0  0 1  0 0  0 0   1 0 
 0 1 
 
A final very interesting example is Th(HA) where HA is the "high 
school algebra" structure  〈?,+,.,↑〉  with ↑ being exponentiation. 
 
 A theory is said to be one-based if it has a base which consists of 
one equation.  It was shown by McKenzie [1970] that the theory of 
lattices was is one-based - his original proof yielded an equation with 34 
variables and of length about 300,000.  (The author was tempted to put 
an exclamation mark after the 300,000 - but that might make the length 
appear to be even bigger than it really was!)  Padmanabhan has reduced 
it to a formula involving 7 variable and of length about 300.  Gratzer, 
McKenzie & Tarski also showed that the theory of Boolean algebras 
was one-based (Gratzer [1971]).  Neither of these proofs were easy and 
the single equations were not particularly revealing. 
 
 All two element groupoids can be divided into seven classes such 
that any two groupoid in the same class are isomorphic or dual-
isomorphic.  Five of the classes have theories that are one-based and the 
remaining two, whose representatives are 〈{0,1},∨〉 and 〈{0,1},→〉, have 
been shown by Potts [1965] to be two-based.  Here 0 and 1 are 
considered as the truth values "false" and "true" and ∨ and → have their 
usual meaning from propositional logic.  
   
 A base is said to be irredundant if no proper subset of it is a base.   
It is a little surprising that a single theory can have irredundant bases 
with different cardinalities - so there is no concept such as the 
"dimension" of a theory.  (But not very surprising because the cyclic 
group of 6 elements can have a set consisting of one generator or a set 
consisting of two generators.)  It can be shown, however, that every 
irredundant base of a finitely based theory must have finite cardinality.  
There is a beautiful result of Tarski [1968] that says that the possible 
values of the cardinalities of the irredundant bases of a finitely based 
non-trivial theory is either a finite or an infinite interval of positive 
integers, i.e., either [m,n] or [m,? ).  Here ? is the first infinite cardinal 
and is better known as aleph-null.  The trivial theory consisting of all 
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tautological identities has the empty set as a base and thus an 
irredundant base of cardinality 0.       
 
 For non-finitely based theories there are two possibilities: there is 
either an irredundant base of cardinality ?  or there is no irredundant 
base.  In the latter case this means that every base has a proper infinite 
subset which is also a base.  No mathematically interesting theory 
without irredundant bases have been found so far and it would be 
interesting to know if there is an infinite group G such that Th(G) has no 
irredundant base.   If a theory has an infinite irredundant base G it will 
automatically have 2?  many different sub-theories because there are 2?  
infinite subsets of G and each subset will produce a different sub-theory.  
The same may not be true for theories with no irredundant base.  The 
most we can say at this point is that it will have at least ?  many different 
sub-theories.    
 
5. Decision problems . 
 
 A decision problem  can be characterized as a problem in which 
there are an infinite number of inputs and for each input there is a YES 
or NO answer.  Also each input must be finitely specifiable so there will 
be a denumerable number of inputs.  A typical decision problem is the 
primality problem : 
Given an arbitrary number n, can we tell if it is prime?  Here the inputs 
are natural numbers and are usually presented in base 10 as a finite 
string of digits.  We say that a decision problem is algorithmically 
solvable if there is a single algorithm which when given the input 
computes the correct answer in a finite number of steps.  It is well 
known that the primality problem is algorithmically solvable.  We just 
have to check if n is divisible by some prime ≤ √n.    
 
 The halting problem is as follows:  Given an arbitrary Turing 
machine, can we tell if it will halt when started on the blank tape ?  It is 
the standard example of a decision problem which is not algorithmically 
solvable and many decisions problems are shown to be algorithmically 
unsolvable by showing that an affirmative answer would result in the 
halting problem being algorithmically solvable.     
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 We now turn our attention to decision problems in equational 
logic.  But before doing this we recall that Tarski [1953] showed that 
there is a finite set H of equations such that the theory TH = Conseq(H) 
is not algorithmically decidable.  This means that the decision problem 
for TH is not algorithmically solvable, i.e., there is no algorithm which 
can tell us if an arbitrary equation s is in TH or not.  (By the way the 
decision problems for most equational theories, such as group theory 
and ring theory, are algorithmically solvable.)  Below are some 
examples of algorithmically unsolvable decision problems.  In 
everything that follows G will be an arbitrary finite set of equations. 
  
 U1. Is the theory Conseq(G) consistent ?   
 U2. Is the theory Conseq(G) maximal ? 
 U3. Is the theory Conseq(G) one-based ? 
 U4. Is the theory Conseq(G) algorithmically decidable? 
 U5. Is G a base for the theory of groups? 
 U6. Is G a base for the theory of Boolean algebras 
 
Problem U1 is equivalent to asking if the equation  x=y  is derivable 
from G, because the equation  x=y  is a base for the inconsistent theory 
which consists of all possible equations.   
 Not all the problems of these types are algorithmically 
unsolvable.  Below are some other examples of algorithmically solvable 
decision problems.  
 
    S1. For an arbitrary finite structure A, is Th(A) maximal? 
    S2. Is G a base for the theory of commutative groupoids? 
    S3. Is the theory Conseq(G+G1) consistent ?   
 
Here G1 is the associative rule from group theory.   A commutative 
groupoid is one which satisfies x.y = y.x . 
 
 In connection with problem U6, we would like to mention the 
Robbins conjecture.  A more complete discussion is given in Cipra 
[1999] and McCune and Padmanabhan [1996].  Robbins conjecture 
asks if the following three equations form a base for the theory of 
Boolean algebras: 
 
    1.  x∨y = y∨x    (commutativity) 
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    2.  x∨(y_z) = (x∨y)∨z   (associativity) 
    3.  ((x∨y)'_(x∨y')')' = x  (Robbins axiom) 
 
This problem was open for 63 years until McCune, building on the work 
of others, recently obtained a solution from his automated theorem 
prover (a computer program called EQP).  Note the algorithmic 
unsolvability of U6 only means that there is no algorithm which can 
solve all problems of the format of Robbins conjecture - it did not mean 
that Robbins conjecture could not be settled.  What is remarkable here is 
that this seemingly simple problem defied the efforts of some of the best 
mathematicians but succumbed to the brute force of a computer.  But 
that is not the complete story - there was a human being who wrote the 
program with the aid of experts in equational logic such as S. Burris and 
R. Padmanabhan.  And here I abruptly end my tale for it has gotten 
much too long! 
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