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ABSTRACT. The purpose of this note is to define a collection of invariants associated to
smoothly bounded domains in Riemannian manifolds and to study their relationship to well
known geometric objects. We review a number of comparison type results, including an analog
of the Polya conjecture. We study the relationship between our invariants and Dirichlet
spectrum. The note is expository.

1: INTRODUCTION

There is a natural relationship between diffusion processes on a Riemannian manifold
and the geometry of the underlying manifold. This relationship can be seen as arising
via the association of a partial differential operator to each diffusion (the infinitesimal
generator of the diffusion processes) on the one hand, and the connection between the
geometry of the manifold and certain natural partial differential operators (the Laplace-
Beltrami operator), on the other. The purpose of this note is to investigate a number of
results which illustrate the nature of this connection. We are particularly interested in the
connection between the Dirichlet spectrum (cf section 2) and a collection of probabilistic
objects constructed using a natural diffusion (cf section 3). To introduce the objects of
interest and to illustrate how they are “typically” related to the geometry of the underlying
manifold, we begin by focussing on a theorem of comparison geometry:

Theorem 1.1 (cf [M1]). Let (M, g) be a Riemannian manifold which admits an isoperi-
metric condition with constant curvature comparison space form M. Let X; be Brownian
motion on M and, given D C M, suppose that T = 7p = inf{t > 0: Xy ¢ D} is the first
exit time of X from D. Then, for all smoothly bounded domains D with compact closure,
for all natural numbers n, if voly(D) = v, then

(1.1) Am%msém@mn
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where B C M, is a geodesic ball of volume v, E, denotes the expected value with respect
to the measure charging Brownian paths beginning at z, and dg (respectively, dg,) is the
volume form associated to the metric g (respectively, gy ).

The goal of this report is to give some indication of why this result is useful/interesting,
to give some motivation for the result, to give a few related results which suggest the
existence of deep structure, and to sketch directions for future work. To accomplish this
goal, the remainder of the note is broken into three parts. Section 2 is an introduction
to the material which includes a discussion of the foundations of spectral and comparison
geometry. Section 3 outlines the elementary probability and analysis required to under-
stand the statement of the Theorem 1.1, as well as a number of additional theorems whose
statement are natural given the introductory material. Finally, in section 3 we provide
a number of results which describe the relationship between Dirichlet spectrum and our
invariants. These results are most striking in the context of graphs and their associated
Laplace operators. We develop graph theoretic material to the extent that it is needed for
the presentation of our theorems.

2: BACKGROUND ANALYSIS AND GEOMETRY

Let (z1,x2,...,2z,) be standard coordinates on IR™ with the usual smooth structure.
The Laplace operator acting on smooth functions on IR" is given by

Given a smoothly bounded domain D C IR"™ the Laplace operator restricts to act on
smooth functions on D. If D has compact closure and we restrict the domain of the Laplace
operator to functions which vanish at the boundary, the Laplace operator is self-adjoint
(with respect to the usual inner product given by integration). The Dirichlet spectrum
of the domain D, denoted spec(D), is the collection of corresponding eigenvalues of the
Laplace operator. That is, spec(D) consists of those real numbers, A, for which we can
find a smooth solution of the boundary value problem

Af+Af=0onD

(2.1) f=0on0D.

When the domain D has compact closure, the spectrum is known to be discrete and
positive. We will write

spec(D) = {A, : (2.1) has a solution with A = A, }.

Classical spectral geometry arose as an attempt to clarify the relationship between the
geometry of a Euclidean domain D and its associated spectrum, spec(D). To see why there
should be an interesting relationship, note that there is a coordinate invariant description of
the Laplace operator: if d : C°(IR") — Q!(IR") denotes the exterior derivative mapping
smooth functions to one-forms and d* : Q'(IR™) — C*°(IR"™) is the adjoint of d (with
respect to the Euclidean metric), then the Laplace operator is given by

A = d*d.
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There are two important things to realize about this formulation:

(1) The invariant definition depends on the smooth structure and on the metric, and
hence the spectrum depends (only) on the smooth structure and the metric. In
particular, the spectrum of a Euclidean domain is invariant under Euclidean mo-
tions.

(2) The invariant definition allows us to associate a Dirichlet spectrum to domains
in arbitrary Riemannian manifolds (as well as to compact Riemannian manifolds
without boundary).

Thus, we can formulate a fundamental problem in the category of Riemannian manifolds:
What is the precise relationship between (Dirichlet) spectrum and geometry?

Perhaps the first example of a result of spectral geometry is the

Rayleigh conjecture:. If D is a smoothly bounded domain in IR?, then vol(D) = v
implies that A1 (D) > A1 (B) where B is a disk of volume v.

Rayleigh’s conjecture was proven in the early twentieth century independently by Faber
and by Krahn, who both noted that the key geometric property needed to establish this
result was the classical isoperimetric condition for IR®: Amongst plane domains of a
given area v, the circle has minimal boundary length. Their results are a considerable
generalization of the Rayleigh conjecture to the case of Riemannian manifolds which admit
an analog of the classical isoperimetric condition. More precisely,

Definition. Suppose that (M,g) is a Riemannian manifold. For k € IR, let M, be a
constant curvature space form with curvature k (if K > 0, M, is a Fuclidean sphere, if
k =0, M, is a Fuclidean space, if k < 0, M, is an hyperbolic space). We say that M
admits an isopermimetric condition with constant curvature comparison space M, if there
exists K such that for every domain D C M,

voly(D) = v implies that areag(0D) > areagy, (0B)

where B C M, is a geodesic ball of volume v, and areay(0D) denotes the surface area
induced by g on the boundary of D.

That IR? admits an isoperimetric condition with comparison space IR? is the classical
isoperimetric result known to the Greeks and established by Steiner in the nineteenth
century. That constant curvature space forms likewise admit isoperimetric conditions
with comparion spaces given by themselves is a result almost as old. A good reference for
isoperimetric material is [BZ].

With this definition and these examples, we can now concisely state the Faber-Krahn

result:

Faber-Krahn Theorem. Suppose that (M,g) is a Riemannian manifold admitting an
isoperimetric condition with constant curvature comparison space form M,. Suppose that
D C M 1is a smoothly bounded domain. Then

(2.2) voly(D) = v implies A1 (D) > A (B)

where B C M, is a geodesic ball of volume v.

The Faber-Krahn theorem is a result representative of that branch of mathematics la-
belled Comparison Geometry. Roughly speaking, results of Comparison Geometry involve
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hypotheses on a Riemannian manifold which allow comparison with a model space (eg
an isoperimetric condition), and results which are usually phrased in terms of comparison
with a model (eg the right hand side of (2.2)). Our main result (Theorem 1.1), as well as
a number of related theorems we will discuss, fall into this class of results. For a survey
of Comparion Geometry see [CE].

The Faber-Krahn theorem is also an example of a direct result of spectral geometry.
That is, given constraints on the geometry of the space in which we work (a smoothly
bounded domain of volume v inside a Riemannian manifold admitting an isoperimetric
condition), we deduce results about the spectrum of the underlying space, thus estab-
lishing a connection between the geometry of a space and the corresponding Dirichlet
spectrum. There are a great many such results (cf [Be| for survey material and an ex-
tensive bibliography) establishing a number of deep connections between the geometry of
an ambient space and corresponding spectral data. Conjectures and results in the other
direction (ie inverse spectral results) in which one constrains spectral data and deduces
geometric constraints on the ambient space are in large measure resposponsible for much
of the interest in spectral geometry during the last 50 years. An early conjecture, that
Dirichlet spectrum determined planar domains up to isometry, was popularized by Mark
Kac’s “Can you hear the shape of a drum?” formulation of the problem (cf [Kal]). This
formulation resulted in rapid progress and extended interest in the field.

There are a variety of natural generalizations of the Faber-Krahn theorem which play an
important role in the history of spectral and comparison geometry. One such generalization
is a conjecture of Polya for Euclidean spaces which says that the conclusion of the Faber-
Krahn Theorem should hold for all Dirichlet eigenvalues. More precisely,

Polya Conjecture. Suppose that D is a smoothly bounded domain in Fuclidean space.
Then

(2.3) vol(D) = v implies that A\, (D) > A\, (B)

where B s a ball of volume v.

While Polya failed to establish the conjecture that carries his name (as has everyone
else that has tried to establish the result), he did manage to establish a great number of
related geometric results for Euclidean domains that arose in the context of mathematical
physics (cf [PS]). Many of these results were obtained using symmetrization arguments
introduced by Steiner in his attempt to establish the isoperimetric inequality and used
by Faber and Krahn in settling the Rayleigh conjecture (for an excellent introduction to
symmetrization in the context of isoperimetric inequalities see [Bal).

One of the important problems settled by Polya arose in the context of the study of the
resistance of homogenous elastic bodies to an applied torque. More precisely, suppose we
are given a homogenous cylinder whose cross section is given by a planar domain D. Let
u1 : D — IR? be the function defined as the solution to the Poisson problem

Aui+1=0o0n D

(2.4) u; = 0 on OD.

The torsional rigidity of the domain D is defined to be the quantity

A(D):/Dul(x)dx
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where dx is Lebesgue measure. Torsional rigidity gives a precise quantitative measure of
the resistance of a homogeneous cylinder to torque [Se]. Polya established

St. Venant Torsion Conjecture. Let D be a smoothly bounded domain in the Fuclidean
plane. Then
vol(D) = v implies that A(D) < A(B)

where B is a disk of volume v.

By now it should be clear that there is a relationship between the Polya conjecture, the
St. Venant torsion conjecture, and Theorem 1.1. Formally, Theorem 1.1 (for the case of
M =1R") is the analog of the Polya conjecture with average exit time moments replacing
eigenvalues (the Euclidean result follows from some work of Aizenman-Simon [AS]). On
the other hand, Theorem 1.1 (for the case of M = IR? and n = 1) is a restatement of
the St. Venant Torsion Conjecture. To understand this latter statement requires a little
probability.

3: BACKGROUND PROBABILITY

To understand the relationship between Theorem 1.1 and The St. Venant Torsion Con-
jecture, we need to understand how it is that exit time moments (probabilistic objects) are
related to Poisson problems (analytic objects). The key to understanding this connection
is understanding how the temperature at points of a domain which is initially heated to
a uniform value, evolves when the boundary of the domain is held at the constant tem-
perature zero. To give an idea of how these connections arise, we examine a particularly
simple model for heat flow along a uniform wire.

We begin by restricting our attention to a collection of equally spaced points along the
real line. Fix 0, > 0 and write

Rs, = {z € R : x = mJ, for some integer m}.

We were interested in investigating the motion of a particle which starts at Xy € IRs, and
moves either one unit to the right or one unit to the left every time unit ¢;, according to
the outcome of the flip of a fair coin. Let  be the collection of all sequences of heads
and tails. We can think of 2 as a probability space (2 can be thought of as sequences of
0’s and 1’s giving binary expansions for elements of [0,1].). Let ¥; : Q@ — {1, —1} be the
random variables defined by

1 if the ¢th flip is heads, ie w; = H

—1 if the ¢th flip is tails, ie w; =T

i) - {

Note that the Y; are independent and identically distributed. In addition, we can use the
Y; to keep track of the position of our particle. We denote the position of the particle after
n units of time by X, :

=1

where X is the initial position of the particle. Note that X,,, as a sum of i.i.d. random
variables, is a random walk.
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If we think of time as an independent variable and plot X,, as a function of time,
interpolating between points, we get, for each element of €2 and each starting point X,
a piecewise linear trajectory representing the motion of our random particle. We are
interested in understanding which trajectories are likely to occur and what probabilities we
should associate to the occurence of such trajectories. Stated otherwise, we are interested
in the transition probabilities of the random walk X,,, given that we know the starting
position. Note that these transition probabilites can be thought of as defining a measure
on the collection of piecewise linear paths which charge paths which begin at Xj.

To determine the transition probabilities we set
Py(k,n) = Prob(X,, = kd;|Xo =y)

and we note that in order for the particle to be at position kd, at time n, it must be within
one unit of kd, at timen — 1 :

(3.2) P,k,n)=-(Py(k+1,n—-1)+ Py(k—1,n—1)).

DO | =

A little algebra gives
(3.3)
Py(k,n) — Py(k,n—1) 162 P,(k+1,n—1)—2Py(k,n—1)+ Py(k—1,n-1)
0t 206, 62 ’

Note that the left hand side of (3.3) is a difference quotient involving only the time variable
while the right hand side is a difference quotient involving only the space variable. We
write

52
Z2D2P,(k,n).

(3.4) Dth(kvn) 2 5

If we assume that P, arises as the restriction of a smooth function and we send d; and d,
2

to zero in such a way that approaches a limit, say 1, then the equality in (3.4) converges

to

or, 1 0P,

ot 2 0x2

(3.5)

We conclude that the transition probabilities P,(k,n) satisfy a discrete version of the
heat equation. Our computations also suggest that in the right “continuum limit”, the
transition probabilities for the random walk provide solutions for the one-dimensional heat
equation. We develop this further.

We will associate to each random walk the polygonal path which its trajectory deﬁnes

Such paths are continuous. It is possible to show that, given the relationship 5 =1,
the paths have limits which are well defined continuous paths which will depend on a
continuous (as opposed to discrete) parameter ¢. Sufficient diligence to detail leads to an
understanding of what we mean by “random motion on the line.” We offer the following
working definition:

We will say that a particle moves randomly or undergoes Brownian motion if the tra-
jectories of the particle are continuous paths which are given as limits of the trajectories
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for our simple random walk, together with a family of probability measures, P,, y € IR,
which charge those paths beginning at the point y. We will write such trajectories as

Xy= lim X,
6t,6z—)0

2
where the limit is understood to occur under the restriction (;—’; =1.

To give a true definition of Brownian motion would require lots of machinery and would
obscure the properties of the process in which we are interested. Those interested in the
details of a rigorous construction should check any one of a number of modern references.
Two such references close in spirit to the development given above are the book of Ito and
McKean [IM] and/or the expository paper of Kac’s [Ka2].

Since the trajectories for Brownian motion arise as limits of the trajectories of our
random walks, we should be able to study probabilistic properties of Brownian paths by
studying corresponding probabilistic properties of random walks and taking an appropriate
limit. For example, assuming that the process starts at y = 0 we examine the probability
that at time ¢ the process is at position x (more accurately, we will estimate P(X; €
[,z + dz]) where dz is small). If d, and J; are small enough, we should be able to
approximate this by P,(k,n) where ¢t ~ nd; and x ~ kd,. That is,

Py(z,t) ~ P,(k,n)

when 9, and é; are small and t ~ nd;, = ~ kd,.

Recall, X,, behaves like a binomial random variable of mean zero and variance n, and
thus, we expect

This leads us to a guess as to how Py(x,t) behaves for general z € IR. We expect that

1 _(e—p?

e 2t
V27t

thus giving further confirmation that this approach allows us to interpolate between prob-
ability and PDE. In fact, we can push things further: Suppose that f : IR — IR and
let

Py(z,t) =

(3.6) u(k,n) = Exs, [f(Xy)]
= Zf(j%)Pkax (J, ).

A direct computation then gives that u satisfies

1
Dtu = QD:%U

u(k,0) = f(kds)

(3.7)



8 PATRICK MCDONALD

Thus, we expect that

w(@,t) = B[ f(X:)]

satisfies
ou_10%
(3.8) ot 20x2
u(z,0) = f(z)

Note that the strategy for solving the heat equation is the same in both the discrete and
the continuous case: average over the correct collection of paths (either random walk paths
or Brownian paths). We can solve other boundary value problems using similar averaging
techniques. For example, suppose that I = [a,b] is an interval with compact closure and
let 7 be the first exit time of Brownian motion from I :

r=inf{t >0: X; ¢ I}.

Suppose that g : I — IR and define

(3.9) ug(x) = Ey [/ g(Xt)dt] :
0
Then wu solves the Poisson problem:

1
“Autg=0onl
(3.10) putg=0on

u = on 0I.

In particular, if we take g = 1, we see that

satisfies .
EAUI +1=0o0on/1

u=0on 0I.

This explains the connection between the “St. Venant Torsion Problem on a line segement”
and a special case of Theorem 1.1.

It should be clear that there are a variety of directions in which we can generalize these
results. In particular, we could work on a lattice in IR"™ instead of a lattice in IR, moving to
nearest neighbors in some random uniform fashion. Then the arguments sketched above
provide an intuitive approach to Brownian motion in IR" and its relation to the solution
of boundary value problems. In particular, suppose that X; is Brownian motion in IR"
and that P, is the corresponding family of probability measures charging Brownian paths
beginning at x € IR"™. Suppose that D C IR" is a smoothly bounded domain with compact
closure and that 7 is the first exit time of X; from D. Let u be the solution of the Poisson
problem

1
§Au1+1:00nD
uw=0on dD.
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Then u(z) = E[7].
Similarly, suppose that p(z,t) is the probabilty distribution function of 7 :
(3.11) p(z,t) = Pp(T > t).

then p(z,t) satisfies

1 0
QAp——p:00nD><(0,oo)

ot
. 1 ifzeD
limp(z,t) = { .
t—0 0 ifxedD
p(z,t) =0if z € OD.

(3.12)

Let p(z, A) be the Laplace transform of p(z,t) :
(3.13) WNz/MMWWt
0

Expanding e~ and using (3.13) we have

(=N

(3.14) WN:Z&H]M

k=0

Thus, we see that p(x, \) satisfies

1
§Aﬁ+)\ﬁ:00an (0, 00)
p(z,\) =1if x € OD.

(3.15)

Letting A — 0 in (3.14) and (3.15) we conclude that if u solves

1
§Auk + kup_1 =0on D

(3.16)

ur, = 0 on 0D.
then
(3.17) ug(z) = B[]

In particular, we have generated a candidate for “higher torsion” in the St. Venant
Torsion Problem: integrals of the functions uy(x) = E,[7%]. As a natural generalization of
the Saint Venant Torsion Problem, we expect a result like Theorem 1.1 to hold and indeed
this is the case (the proof, found in [M1], uses the rearrangement techniques of Steiner).

Observe that Theorem 1.1 suggests that the Poisson spectrum pspec(D) = {Ax(D)}

defined by

(3.18) Ap(D) = /D E,[m*]dg
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is closely tied to the geometry of D. Indeed, it’s easy to see that (as in the case of the
Dirichlet spectrum) each element of the sequence is invariant under the isometry group of
the ambient space (this follows immediately from (3.16)-(3.18)) and in this sense, elements
of pspec(D) are geometric invariants associated to the domain D. The Faber-Krahn The-
orem, the Polya Conjecture, the Saint Venant Torsion Problem, and Theorem 1.1 suggest
that there might be an interesting relationship between pspec(D) and spec(D). Roughly
stated, the relationship is one of “reciprocal for comparison results.” In the next section we
will make this relationship precise in the context of graphs and graph Laplace operators,
where it is fully understood. For the remainder of this section, we describe a number of
comparison results for Dirichlet spectrum and provide the suggested analogs in the context
of Poisson spectrum.

When sectional curvatures are bounded, we have the following theorem of Cheng [C1]:
Theorem (cf [Cl]). Suppose that M is a complete Riemannian manifold all of whose
sectional curvatures are bounded above by a given constant k. Let p € M and suppose that

d > 0 is less than the injectivity radius of M at p. Let D(p,0) C M be the geodesic ball
centered at p of radius 0. Then

A(D(p,6)) = Ai(Bx)
where B is a geodesic ball of radius 6 in the constant curvature space form M,.
We have
Theorem 2.1 (cf [M2]). Suppose that M is a complete Riemannian manifold all of whose
sectional curvatures are bounded above by a given constant k. Let p € M and suppose that
d > 0 is less than the injectivity radius of M at p. Let D(p,0) C M be the geodesic ball
centered at p of radius 0. Then, for all natural numbers m,
Am(D(p,0)) < Am(Bs)
where B is a geodesic ball of radius § in the constant curvature space form M,.
Similarly, when Ricci curvature is bounded, there is another theorem of Cheng [C2]
Theorem (cf [C2]). Suppose that M is a complete Riemannian manifold of dimension n
with Ricci curvature satisfying Ric(€,€) > k(n — 1)|€|%. Let p € M and suppose that § > 0
is less than the injectivity radius of M at p. Let D(p,d) C M be the geodesic ball centered
at p of radius 6. Then,
A (D(p,6)) < Ar(Bx)
where B is a geodesic ball of radius 6 in the constant curvature space form M,.

Once again, there is an analogous result for Poisson spectrum:

Theorem 2.2 (cf [M2]). Suppose that M is a complete Riemannian manifold of dimen-
sion n with Ricci curvature satisfying Ric(€,€) > k(n—1)|¢|%. Let p € M and suppose that
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d > 0 is less than the injectivity radius of M at p. Let D(p,0) C M be the geodesic ball
centered at p of radius 6. Then, for all natural numbers m,

Am(D(p,0)) = Am(Bx)
where B is a geodesic ball of radius 6 in the constant curvature space form M,.

These results are meant to illustrate the “reciprocal relationship” mentioned above. We
are now in a position to clarify precisely what form the “reciprocal relationship” takes -
at least in the discrete case.

4: RELATIONS BETWEEN DIRCHLET SPECTRUM
AND POISSON SPECTRUM - THE DISCRETE CASE

In the previous section we sketched the construction of symmetric random walks on
a lattice in Euclidean space and associated to such a construction a discrete version of
the Laplace operator acting on functions on vertices of the lattice. This construction is
a special case of a much more general construction involving graphs which are endowed
with edge weightings and vertex weightings. More precisely, let G = (V, E') be a connected
oriented bidirected graph with vertex set V' and edge set E. Given e € E, we will represent
e as an ordered pair e = (t(e), h(e)) where t(e), h(e) € V.

We will denote by C°(G) the vector space of real valued functions on V and by C'(G)
the vector space of real valued functions on E. There is a natural coboundary operator
d:C°G) — CYG) defined by

Let C)(G) c C°(G) and C}(G) c CY(G) be the subspaces consisting of those functions
with compact support.

Let Wy : V — IR be a vertex weighting. Associated to Wy, there is an inner product
on CJ(G) defined by

(4.1) (fogyv =Y f@)g(@)Wy(z).
eV
Similarly, a function Wg : E — IRT defines an inner product (-, )z on C3(G).

Given a pair of functions Wy and W as above, we call the ordered pair W = (Wy, Wg)
a weighting for G if

(4.2) Weg(z,y)Wv(z) = Wr(y, )Wy (y)

where z,y € V' ((4.2) corresponds to a reversibility condition). If O is an orientation for
G and W is a weighting, we call the triple (G, O, W) a graph with geometry.

Given a weighting W, we will denote by d};, : C'(G) — C°(G) the associated adjoint
of the coboundary map d. We will denote by A : C°(G) — C°(G) the (vertex) Laplacian,
A = djy,d (we will not investigate the edge Laplacian ddjy ).
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Interest in applications involving discrete Laplace operators of the type defined above
can be traced to Kirchoff [Ki] who modelled simple circuits as finite graphs with each
edge corresponding to the conductance of a given circuit component (cf [DSn] for a survey
of random walks and electrical networks). As Kirchoff established, it is possible to give
graph theoretic formulations for the laws governing current behavior in a simple circuit
(Kirchoff’s laws for voltage and current, Ohm’s law). Given a simple circuit (ie a graph
with each edge weighted to represent the conductance of a given component and each
vertex of weight one) and a given input current, it is possible to formulate the problem
of finding the induced circuit current as a Dirichlet problem involving the edge Laplacian.
In addition, there is a solution to this Dirichlet problem given by “energy minimization”
(Thomson’s Principle, cf [Bi]).

Since Kirchoff, the study of graph Laplacians has yielded a remarkable wealth of infor-
mation in a variety of contexts (the references [Bi], [C3], [Lo] and references therein provide
expository introductions to some of these applications). Among those fields where graphs
and their associated discrete boundary value problems have found interesting applications
are potential theory (cf [Bi], [Du], and references therein), spectral theory (cf [DS], [Ge],
[C3]), differential geometry and global analysis (cf [Do], [F1], [F2], [V1], [V2]). We restrict
our our the study of boundary value problems for the interior Laplace Operator on com-
pact subgraphs of a given ambient graph. We are interested in the relationship between
the Dirichlet spectrum and the Poisson spectrum for such boundary value problems for
graph Laplacians.

Definition 1.1. Let (G, O, W) be a graph with geometry and let D be a domain in G. Let
spec(D) be the spectrum of the interior Laplace operator associated to D. We define the
set spec* (D) by

(4.3) spec” (D) = {\ € spec(D) : (¢x, Lip)v # 0}

where ¢y is a normalized eigenvector associated to A and 1;p is the indicator function of
the interior of D, denoted 1D.

We emphasize that spec* (D) contains no information concerning spectral multiplicity;
it is a subset of the real numbers consisting of those eigenvalues whose corresponding
eigenspace projects nontrivially onto constant functions.

The next result indicates that pspec(D) contains any geometric information contained
in spec*(D) :

Theorem 4.1 (cf[MM1]). Suppose that (G,O, W) is a graph with geometry and that D
and D' are domains in G. Then, with the notation as in Definition 1.1,

pspec(D) = pspec(D") implies spec* (D) = spec*(D")
and we say that pspec(D) determines spec* (D).

To understand both why this theorem is true and why it is the best one can reasonably
hope for, we return to the heat equation and a particular collection of invariants associated
to the elements of pspec(D).
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Recall, if D is a smoothly bounded domain in a Riemannian manifold M and H(x,t)
solves the heat equation with intial data

AH = 0:H on D x (0,00)
(4.4) H(z,0)=1on D
H(y,t) =0 on 9D x (0, 00)

then the heat content of D is the function Q(t) defined by

(4.5) Q(t) = /D H(z, t)dg

where dg is the metric density. We note that these definitions make perfect sense in the
context of graphs with geometry.

There is a close connection between the heat content of D and the Poisson spectrum.
From (3.12) it is clear that the heat content is the integral of the distribution function for
the exit time of Brownian motion over the given domain. For each = € D, it follows from
the classical theory of moments that the distribution function P, (7 > t) is determined by
the functions E,.[7*] (cf [MMZ2]). We have:

Theorem 4.2 (cf [MM1], [MM2]). Let M be a complete Riemannian manifold, D C M
a smoothly bounded domain with compact closure. Then pspec(D) determines the heat
content of D. The same results hold in the context of graphs with geometry.

By a theorem of Gilkey [Gi], the heat content Q(¢) given by (4.5) admits an asymptotic
expansion for small ¢ :

(4.6) Q)= Y ant?

where the coefficients ¢,, are given as integrals of metric invariants associated to D. The
coefficients in (1.17) are sometimes referred to as the heat content asymptotics. Theorem
4.2 leads to the following result in the discrete setting (cf [MM1]),

Theorem 4.3 (cf [MM1]). Suppose that (G,O,W) is a graph with geometry and that
D is a domain of G. Suppose the heat content asymptotics of D are given by {qn}. Then
{qn} determines spec*(D). In addition, {q,} is determined by pspec(D), and determines
pspec(D).

The key to proving Theorem 4.3 involves an interesting Dirichlet series whose definition

involves the manner in which constant functions decompose relative to the eigenspaces of
the Dirichlet Laplacian. More precisely, define a spectral partition of the volume as follows:

Definition. For X € spec(D), let Ey be the eigenspace associated to A, and let {¢x ;1 <
j < dim(Eyx)} be an orthonormal basis of Ey. Let

(4.7) ax; = (1, ¢xr4)D
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The collection {ay ;} where X varies over the Dirichlet spectrum is called a spectral partition
of volume.

Note that the definition of a spectral partition of the volume depends on the choice of
an eigenbasis. The norm of the projection of the function f(z) =1 on a given eigenspace
does not depend on the choice of a basis. Thus, the quantity

mult(x)

~2 2
ax = Z W)
k=1

does not depend on choice of basis. For s a complex number we define a Dirichlet series
by

(48) o= Y i (5]

\;Espec(D)

In the context of graphs, the spectral data is finite and there is no question that the series
converges. In addition, it is clear from (4.7) that {p(s) does not depend on the choice
of basis. Finally, it is clear from (4.8) that the sum in the definition could be taken over

pspec(D).

The following result gives a concise meaning to what we meant by “reciprocal relation-
ship” in the previous section (the proof can be found in [MM1]):

Theorem 4.4 (cf [MM1]). Let (G,O,W) be a graph with geometry, D C G a domain
with nonempty boundary. Let (p(s) be defined as in (4.8). Then, if m is a natural number,

¢p(m) = AmT(,m

(p(=m) = (=1)"mlgn (D)

where A, (D) are the elements of the Poisson spectrum and g, (D) are the heat content
asymptotics.

For the case of Riemannian manifolds, there are a number of results analogous to those
of Theorem 4.3 and Theorem 4.4. Proofs can be found in [MM2].

REFERENCES

[AS] M. Aizenman and B. Simon, Brownian Motion and Harnack inequalities for Schrodinger opera-
tors, Comm. Pure and Appl. vol35 (1982), 209-273.

[Al] D. Aldous, Applications of random walks on finite graphs, Selected Proceedings of the Sheffield
Symposium on Applied Probability (Sheffield, 1989) volIMS Lecture Notes Monograph Ser., 18,
Inst. Math. Statist., Hayward, CA (1991), 12-26.

[Ba] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Publishing, Marshfield Mass.,
1980.

[Be] P. H. Bérard, Spectral Geometry: Direct and Inverse Problems, Springer LNMS vol1207, New
York, N.Y., 1984.



[DSn]

[Du]
[F1]

[SH]

SPECTRAL GEOMETRY, THE POLYA CONJECTURE, AND DIFFUSIONS 15

N. Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. vol29 (1998), 641-682.

Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer Grundlehren 285, New York,
N.Y., 1980.

S. Y. Cheng, Eigenfunctions and eigenvalues of the Laplacian, Amer. Math. Soc. Proc. Symp.
Pure Math. Part II vol27 ((1975)), 185-193.

S. Y. Cheng, FEigenvalue comparison theorems and its geometric applications, Math. Z. vol143
((1975)), 289-297.

F. R. K. Chung, Spectral Graph Theory, AMS CBMS Regional Conference Series in Mathematics,
vol92, Providence, RI, 1997, pp. 12-26.

J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North Holland Publ.
Co., Amsterdam, 1975.

P. Diaconis and D. Stroock, Geometric bounds for the eigenvalues of Markov chains, Ann. Ap-
plied Prob. voll (1991), 36—61.

J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random
walks, Trans AMS vol284 (1984), 787-794.

P. G. Doyle and J. L. Snell, Random walks and electrical networks, MAA Carus Monographs
vol22, Washington, D.C., 1984.

R. Duffin, Discrete potential theory, Duke Math. J. vol20 (1953), 233-251.

R. Forman, Difference operators, covering spaces and determinants, Topology vol28 (1989), 413—
438.

R. Forman, Determinants and Laplacians on graphs, Topology vol32 (1993), 35—46.

P. Gilkey, Heat content asymptotics, In: Geometric aspects of partial differential equations
(Roskilde, 1998), Contemp. Math. vol242 (1999), 125-133.

K. Ito and H. P. McKean, Diffusion Processes and Their Sample Paths, Springer Grundlehren
125, New York, N.Y., 1974.

M. Kac, Can One hear the shape of a drum?, Amer. Math, Monthly vol73 (1966).
M. Kac, Random walk and the Theory of Brownian motion, Amer. Math Monthly vold7 (1947).

G. Kirchoff, Uber die Auflosung der Gleichungen auf Welche Man beider Untersuchen der Lin-
earen Vertheilung Galvanischer Stréme Gefift Wird, Annalen der Physik und Chemie vol72
(1847), 495-508.

L. Lovasz, Combinatorics, Bolyai Society Mathematical Studies vol2, Hungary, 1993.

P. McDonald, Isoperimetric conditions, Poisson problems and diffusions in Riemannian mani-
folds, Potential Analysis (to appear).

P. McDonald, Ezit Time Moments and two Theorems of Cheng (In preparation).

P. McDonald and R. Meyers, Diffusions On Graphs, Poisson Problems, and Spectral Geometry
(submitted).

P. McDonald and R. Meyers, Dirichlet Spectrum and Exit Time Moments of Brownian Motion
(preprint).

G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University
Press, Princeton, N.J., 1951.

J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. vol43 (1971),
304-3-18.

J. A. Shohat and J. D. Tamarkin, The Problem Of Moments, Amer. Math. Soc., New York, 1943.



16 PATRICK MCDONALD

[Sp] F. Spitzer, Principles Of Random Walk, D. Van Nostrand Company, Inc., Princeton, New Jersey,

1964.

[V1] N. Varopolous, Isoperimetric inequalities and Markov chains, J. Funct. Anal. vol63 (1985), 215—
239.

[V2] N. Varopolous, Brownian motion and random walks on manifolds, Ann. Inst. Fourier vol34

(1984), 243-269.

NEw COLLEGE OF THE UNIVERSITY OF SOUTH FLORIDA,

E-mail address: ptm@Qvirtu.sar.usf.edu



