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Abstract

Galois theory was developed in the early 1800’s as an approach to
understand polynomials and their roots. The beauty of theory has de-
veloped in its own right, with the Inverse Galois Problem as one of the
most famous unsolved problems in algebra. Noether’s Problem arose
during Emmy Noether’s approach to solving the Inverse Galois Prob-
lem. This paper reviews Galois extensions, defines Noether’s Problem
and comments on it’s relation to the Inverse Galois Problem and to
parameterization of Galois Extensions.

Galois theory expresses a correspondence between algebraic field exten-
sions and group theory. We are particularly interested in finite algebraic
extensions obtained by adding roots of irreducible polynomials to the field of
rational numbers. Galois groups give information about such field extensions
and thus, information about the roots of the polynomials.

We begin with the definition of a group:

Definition 1 A group, G is a set of elements with a binary operation
∗ : (G×G)→ G satisfying the following:

1. Closure: ∀a, b ∈ G, a ∗ b ∈ G.

2. Associativity: (a ∗ b) ∗ c = a ∗ (b ∗ c)

3. Identity: ∃e ∈ G 3 a ∗ e = e ∗ a = a

4. Inverses: ∀a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 = a−1 ∗ a = e

EXAMPLES:

1. The integers Z with addition as the binary operation.

2. Q− {0} with multiplication as the binary operation.
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3. Symmetric Group: Let X be a set with n objects X = {x1, . . . , xn}.
Let G be the set of all one-to-one onto maps σ : X → X. G is a group
with binary operation, ◦, composition of functions. This group is called
the Symmetric Group on n letters denoted Sn.

4. C = {f : R → R | f is increasing and continuous} with binary opera-
tion composition of functions.

If G is a finite group, we let |G| represent the number of elements of G.
Next, we define fields:

Definition 2 A field F is a set of elements and 2 binary operations: + and
× such that F is a group under + with identity 0, and F − {0} is a group
under multiplication. Moreover:
∀x, y ∈ F, x+ y = y + x and x× y = y × x

For simplicity we write x× y as xy.

EXAMPLES:

1. Q

2. R

3. C

4. Z7 = {0, 1, 2, 3, 4, 5, 6} with addition and multiplication modulo 7.

Definition 3 A field F is a subfield of a field K if F ⊂ K.

Definition 4 If f ⊂ K are fields, then we say K is an extension field of F .
This is denoted K/F .

Let α ∈ C. Let Q(α) be the smallest field containing Q and α; in partic-
ular any field K that contains Q and α contains Q(α). The field Q(α) can
either be an algebraic or a transcendental extension. We give an example of
each and express some important properties of each type of extension.

We first consider Q(π). π is transcendental over Q: i.e. there is no
polynomial with rational coefficients that has π as a root. Q(π) is isomorphic
to the field of rational functions in x over Q. In addition, we may add another
transcendental element e. Q(π, e)

∼
= Q(x, y) the field of rational functions
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in 2 variables over Q. These are infinite extensions because Q(x) is infinite
dimensional as a vector space over Q. For example, {xi | i ∈ Z} is an infinite
linearly independent set in Q(x) when viewed as a vector space over Q.

We next consider Q(
√

2).
√

2 is a root of the polynomial x2−2. Thus, we
say
√

2 is algebraic over Q, and Q(
√

2) is an algebraic extension field of Q.
An easy exercise shows that any element in Q(

√
2) can be written as a+b

√
2

with a and b rational numbers. Thus, Q(
√

2) is a vector space of dimension
2 over Q. This is a finite extension.

If an extension field L ⊃ Q can be obtained by adding finitely many
roots of polynomials, we say L is a finite algebraic extension of Q. The next
theorem states that any finite algebraic extension can be obtained by adding
a single element to Q.

Theorem 5 (Primitive Element Theorem) Any finite algebraic extension,
L, of Q, has the form:

L = Q(α) for some α ∈ C

Let us return to our original interpretation in terms of polynomials.

Definition 6 Let α be algebraic over Q. f(x) is the minimal polynomial
for α (denoted minQ(α)) if:

1. f(x) has leading coefficient 1.

2. f(α) = 0 and

3. If g(x) is any polynomial with rational coefficients such that g(α) = 0
then the degree of g(x) < the degree of f(x).

A polynomial p(x) is irreducible if whenever p(x) = h(x)k(x) with h(x)
and k(x) polynomials, then either h(x) or k(x) is a constant (i.e. rational
number.)

Theorem 7 minQ(α) is irreducible.

Proof: Let f(x) = minQ(α). Suppose f(x) = p(x)q(x). Since α is a root
of f(x) ∈ C, f(α) = 0 = p(α)q(α). p(α) and q(α) are just complex numbers
whose product is 0. Thus, either p(α) = 0 or q(α) = 0. Without loss of
generality, assume p(α) = 0. Since f(x) is the polynomial with minimum
degree with α as a root, the degree of p(x) = degree f(x). Thus, the degree
of q(x) is 0. This shows f(x) is irreducible.

q.e.d.
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Theorem 8 Let f(x) = minQ(α) for some α ∈ C. Suppose g(x) is a poly-
nomial with rational coefficients such that g(α) = 0. Then, g(x) = f(x)k(x)
for some polynomial k(x).

Proof: By the definition of minQ(α), deg(g(x)) ≥ deg(f(x)). Using the
Euclidean algorithm for polynomials, we can write

g(x) = q(x)f(x) + r(x)

where r(x) = 0 or deg(r(x)) < deg(f(x)). Plugging in α for x we have

g(α) = q(α)f(α) + r(α)

g(α) = f(α) = 0, so r(α) = 0. Since deg(f(x)) is minimal with respect to
having α as a root, r(x) = 0. Thus, g(x) = q(x)f(x).

q.e.d.
Galois is famous for his result that polynomials of degree 5 are not solv-

able by radicals, that is there can be no formula for solving all degree 5
polynomials. In light of this we are interested in fields K ⊃ Q where K
is the smallest field containing all roots of a given polynomial with rational
coefficients. These fields are called splitting fields :

Definition 9 A field K ⊃ Q is a splitting field for the polynomial f(x) if

1. K contains all roots of f(x).

2. If L is another field containing all roots of f(x), then L ⊆ K.

Galois studied these extension fields using automorphisms :

Definition 10 A field automorphism is a mapping φ : F → F where F
is a field satisfying:

φ(xy) = φ(x)φ(y)

and
φ(x+ y) = φ(x) + φ(y)

Let L/Q be a field extension. Let G be the set of automorphisms on L
that leave Q fixed, that is:

σ ∈ G if and only if σ : L→ L is a field automorphism and σ(q) = q for
all q ∈ Q.
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Theorem 11 If L/Q is a field extension, then the set, G(G,Q) of automor-
phisms on L leaving Q fixed is a group with binary operation composition of
mappings.

Let’s look at this another way. Suppose G is a group of automorphsims
on a field F . We are interested in the subset FG ⊂ F that is fixed under all
automorphisms σ ∈ G. An easy exercise shows that this FG is in fact a field.

Definition 12 Let G be the set of automorphisms on a field L. The set of
elements x ∈ L such that σ(x) = x for all x ∈ L and all σ ∈ G is called the
fixed field of G. We denote this LG.

Again, we look at some examples to observe that G(L,Q) may be different
from G(K,Q) if L and K are different extension fields of Q.

Example: Consider Q(
√

2). Let G + G(Q(
√

2,Q) be the set of automor-
phisms of Q(

√
2) that leave Q fixed.

There are 2 automorphisms of Q(
√

2) that leave Q fixed, the identity and:

σ(
√

2) = −
√

2 σ(q) = q ∀ q ∈ Q

Hence, the fixed field of G, Q(
√

2)G = Q.

Example: Now consider Q( 3
√

2) ⊂ R. Let H be the set of automorphisms
of Q( 3

√
2) that leave Q fixed.

Notice that ( 3
√

2) is a root of x3 − 2. Suppose τ is an automorphism of

Q( 3
√

2). Consider τ( 3
√

2
3 − 2).

τ(0) = τ(
3
√

2
3
− 2) = (τ(

3
√

2))3 − 2

Thus, any automorphism of Q( 3
√

2) leaving Q fixed will take 3
√

2 to another
root of x3 − 2. Since there are no other real roots, all automorphisms in H
must fix 3

√
2 also.

Thus the fixed field of G is Q( 3
√

2).

Definition 13 A field extension L/Q is Galois with group G if and only
if G is the group of automorphisms of L leaving Q fixed and LG = Q.

Let us now restate the Galois extension condition for the simple algebraic
extension L = Q(α) for some α ∈ C. Let f(x) = minQ(α). In this case,
L/Q is Galois if and only if L contains all roots of f(x). This is easily seen
in the two examples above. Q( 3

√
2) only contains one root of f(x) = x3 − 2,

whereas Q(
√

2) contains both roots of f(x) = x2−2. This is easily described
in terms of splitting fields:
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Theorem 14 A field extension L/F is Galois if and only if L is the splitting
field for some irreducible polynomial f(x) ∈ F [x].

Galois theory relates the theory of field extensions to group theory. In
particular it exhibits a one-to-one correspondence between subgroups of the
Galois group and subfields of the Galois field extension. Using this corre-
spondence and the theory of solvable groups, Galois showed that there can
be no formula to solve all 5th degree polynomials with rational coefficients.

The most famous open question involving Galois theory is the

Inverse Galois Problem: Does every finite group G appear as a Galois
group over Q?

In 1918, Emmy Noether had the following approach to solving the Inverse
Galois Problem:

Let G be a finite group. Consider the set of |G| indeterminates indexed
by the elements of G:

X = {xg | g ∈ G}
In particular |X| = |G|. The X is just a set, we want to incorporate the

binary operation of G as well. To do this we consider a group action on X.

Definition 15 A group G acts on a set S if there are |G| mappings:

g : S → S

satisfying

1. e(s) = s for all s ∈ S where e is the identity element of G.

2. g(h(s)) = gh(s), where the left side is composition of functions and the
right side is the mapping given by the element gh ∈ G.

In the case of Noether’s approach we let:

g(xh) = xgh

Now, form the purely transcendental field

Q(X) = Q(xe, xg, . . . , xh)

We can now think of G as automorphsims of Q(X) by letting g(q) = q
for all q ∈ Q and all g ∈ G. We are of course interested in the fixed field
of Q(X) under G: (Q(X))G. By construction Q(X)/(Q(X))G is Galois with
group G.
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Theorem 16 (Emmy Noether)
If G is finite and Q(X)G/Q is rational (purely transcendental), then there

is a Galois field extension K/Q with group G.

This follows from Hilbert’s Irreducibility Theorem:

Theorem 17 (Hilbert’s Irreducbility Theorem) If f(x) is an irreducible
polynomial with coefficients in Q(t), then there are infinitely many points
t0 ∈ Q such that ft0(x) is irreducible (over Q).

A proof of Hilbert’s Irreducibilty Theorem can be found in [Se].
Proof of Theorem 16: If Q(X)G/Q is rational, then

Q(X)G
∼
= Q(w1, w2, . . . , wn) where the wi’s are indeterminates. SinceQ(X)/Q(X)G

Galois with groupG, there is an irreducible polynomial f(y) ∈ Q(w1, w2, . . . wn)
such that Q(X) is the splitting field for f(y). By the Primitive Element The-
orem there is an α ∈ Q(X) such that f(α) = 0, and Q(X) = Q(X)G(α).

Let t0 be a point in Q
n. Let ft0(y) be the polynomial in Q[y] ob-

tained by substituting t0 = (a1, a2, . . . , an) in for (w1, w2, . . . , wn) in f(y) ∈
Q(w1, w2, . . . , wn)[y]. Successive applications of Hilbert’s Irreducibility The-
orem result in infinitely many t0 ∈ Qn such that ft0(y) ∈ Q[y] is irreducible
(over Q).

Let L ⊃ Q be the splitting field of ft0(y) for some t0 where ft0(y) is
irreducible. Then L is Galois over Q with group G.

q.e.d.
We conclude with a simple example to illustrate:

Example: Let G be the group with 2 elements: that is G = {0, 1} with
binary operation addition mod 2.

In Noether’s approach, we let X = {x0, x1}. Of course we must think of
G as automorphisms: G contains two elements, the identity map, i and a
map σ. These maps satisfy the following:

i(x0) = x0, i(x1) = x1, and σ(x0) = x1, σ(x1) = x0

To find Q(X)G, we must find combinations involving sums and products
of x1 and x0.

In this case, Q(X)G = Q(x0 + x1, x0x1) Explicitly,

σ(x0 + x1) = σ(x0) + σ(x1) = x1 + x0 = x0 + x1

7



and
σ(x0x1) = σ(x0)σ(x1) = x1x0 = x0x1

It is easy to see that x0 + x1 and x0x1 are transcendental over Q so there
exists a Galois extension with group G over Q. Of course, we saw a concrete
example earlier: Q(

√
2)/Q.

Of course, Q(
√

3)/Q is also a Galois extension over Q with group G. Both
Q(
√

2)/Q andQ(
√

3)/Q can be realized as “specializations” ofQ(x0, x1)/Q(x0+
x1, x0x1) by using the following map.

φ : Q(x0, x1)→ Q(
√
a)

is a field isomorphism (i.e. φ(xy) = φ(x)φ(y) and φ(x + y) = φ(x) + φ(y))
satisfying:

φ(q) = q ∀q ∈ Q and φ(x0) =
√
a and φ(x1) = −

√
a.

In particular φ(x0x1) = φ(x0)φ(x1) = −a ∈ Q, and φ(x0 + x1) = φ(x0) +
φ(x1) = 0 ∈ Q, so Q(x0 + x1, x0x1)

∼
= Q. In this specialization a can be

any rational number which is not a square. The parameterization can be
expressed by the following sentence: “Any extension of Q with a 2-element
Galois group is obtained by adding a root of the polynomial x2 − a where a
is any rational number such that

√
a is not rational.”
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