The Mathematics of Sudoku - Contest B^*

- 1) Imagine a completely blank 9×9 grid (no givens). According to the rules of Sudoku, how many ways are there to validly fill in the top-left 3×3 block? 9! = 362,880
- 2) Consider the puzzle below. How many ways can the remaining cells of the first row be validly filled in? 6! = 720

1	2	3			
4	5	6			
7	8	9			

- 3) Suppose in the puzzle above, that the first row of the top-center 3×3 is also filled in and reads 4-5-6. How many ways are there to complete the first three rows of this puzzle? $(3!)^5 = 7,776$
- 4) Repeat question 3, but this time the first row of the top-center 3×3 reads 4-8-6. $18(3!)^4 = 23,328$
- 5) Given a completely blank 9×9 grid (no givens), how many ways are there to validly fill in the first three rows? $9! \cdot (12 \cdot 7,776 + 108 \cdot 23,328) = 9! \cdot (2,612,736) = 948,109,639,680$
- 6) Consider the below solved Sudoku puzzle. If you swap the top-center 3×3 block with the top-right 3×3 block, which permutations would be needed to retain a valid Sudoku grid? Swap the center 3×3 block with the right-center 3×3 , and swap the bottom-center 3×3

with the bottom-right 3×3 .

7) In Grid S, if you swapped the first two columns of the top-center 3×3 grid, which permutations would be needed to retain a valid Sudoku grid? Swap the first two columns of the center 3×3 block, and swap the first two columns of the bottom-center 3×3 block.

1	2	4	5	6	7	8	9	3
3	7	8	2	9	4	5	1	6
6	5	9	8	3	1	7	4	2
9	8	7	1	2	3	4	6	5
2	3	1	4	5	6	9	7	8
5	4	6	7	8	9	3	2	1
8	6	3	9	7	2	1	5	4
4	9	5	6	1	8	2	3	7
7	1	2	3	4	5	6	8	9

Figure 1: Grid S

- 8) How many distinct Sudoku grids do you think there are (educated guess)? Bertram Felgenhauser and Frazer Jarvis calculated this to be $6,670,903,752,021,072,936,960 \approx 6.6709 \times 10^{21}$.
- 9) Depending on the number of givens, an initial Sudoku puzzle may have more than one solution. How many of the different symbols 1, 2, 3, ..., 9 would have to have initially appeared if the puzzle did have exactly one solution? Eight
- 10) Imagine rotating Grid S 90° clockwise. Do you still have a valid Sudoku grid? What other elementary transformations of Grid S would yield a new Sudoku grid? Yes. Elementary transformations are:
 - clockwise rotation by 0°, 90°, 180°, or 270°
 - reflection about the middle row, middle column, or about either diagonal

- relabeling the symbols 1, 2, 3, ..., 9
- permuting rows within either the top, center, or bottom 3×9 block
- permuting columns within either the left, center, or right 9×3 block
- if viewing the grid as a large 3 × 3 of three "bands" and three "stacks," permuting the three bands, or permuting the three stacks (for example, question 6 ultimately swaps the center stack and the right stack).
- 11) Imagine the set of all elementary transformations of Grid S, together with any finite number of compositions of these transformations. Show that this set forms a group under the operation: composition of functions. Is the group abelian? This is a non-abelian group.
- 12) After having rotated Grid S 90° clockwise, find a relabeling of the numbers $\{1, 2, 3, \dots, 9\}$ that gives you back Grid S.

$$1 \to 3, \quad 2 \to 6, \quad 3 \to 9, \quad 4 \to 2, \quad 5 \to 5, \quad 6 \to 8, \quad 7 \to 1, \quad 8 \to 4, \quad 9 \to 7$$

13) Let E be the set of all Sudoku grids T satisfying $T = \tau(S)$ for some transformation τ . Is every possible Sudoku grid contained in the set E? If not, how many of these types of sets E do you think there are (educated guess)? Ed Russell and Frazer Jarvis calculated this to be 5,472,730,538.

*The questions here are based on content from a web-tutorial called "The Math Behind Sudoku" found at http://www.math.cornell.edu/~mec/Summer2009/Mahmood/Home.html