MAA - EPaDel Student Math Competition

April 6, 2013

Dickinson College

1) Find the coefficient of x^4y^5 in the expansion of $(2x + y)^9$.

2) If two positive real numbers a and b satisfy the equation

$$\frac{a+b}{a} = \frac{a}{b} \; ,$$

find the value of the ratio $\frac{a}{b}$.

- 3) Find the value of $\tan(\sin^{-1}(\frac{1}{5}))$.
- 4) Find the angle θ in the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ satisfying $(\sin \theta + \cos \theta)^2 = 2$.

5) Suppose the terms a_n of a convergent sequence $\{a_n\}$ satisfy the following recursive formula:

$$a_1 = \frac{1}{2}, \quad a_n = \frac{\frac{1}{8}}{\frac{1}{4} + a_{n-1}} \quad \text{for} \quad n > 1.$$

Find the limit of the sequence.

6) Evaluate
$$\lim_{x \to 0^+} x^{\sqrt{-\frac{1}{\ln x}}}$$

7) Name all prime numbers between 80 and 100.

8) Find the area of the largest possible rectangle that has two of its vertices lying on the curve $y = 12 - x^2$ above the x-axis and its opposite pair of vertices lying on the x-axis.

9) Find all points (x, y) lying on the ellipse $xy + x^2 + y^2 = 1$ where the tangent line to the ellipse has slope -1.

10) If $s_n = \frac{n-1}{n+1}$ where s_n denotes the *n*th partial sum of the series $\sum_{n=1}^{\infty} a_n$, find the general term a_n of the series.

11) For what real numbers a is the matrix invertible

$$\begin{bmatrix} 0 & 1 & a \\ a & -2 & -1 \\ -1 & a & 0 \end{bmatrix}$$

12) A bag consists of 6 red marbles and 3 blue marbles. If two marbles are randomly selected from the bag without replacement, what is the probability of picking one red marble and one blue marble? Answers:

- 1) 2016
- 2) $\frac{1+\sqrt{5}}{2}$
- 3) $\frac{1}{\sqrt{24}}$
- 4) $\frac{5\pi}{4}$
- 5) $\frac{1}{4}$
- 6) 0
- $7) \ 83, \ 89, \ 97$
- 8) 32
- 9) $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), (-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$ 10) $a_1 = 0, a_n = \frac{2}{n(n+1)}$ for n > 111) all reals except 1, $\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$
- 12) $\frac{1}{2}$