MAA - EPaDel Student Math Competition

April 6, 2013
Dickinson College

1) Find the coefficient of $x^{4} y^{5}$ in the expansion of $(2 x+y)^{9}$.
2) If two positive real numbers a and b satisfy the equation

$$
\frac{a+b}{a}=\frac{a}{b},
$$

find the value of the ratio $\frac{a}{b}$.
3) Find the value of $\tan \left(\sin ^{-1}\left(\frac{1}{5}\right)\right)$.
4) Find the angle θ in the interval $\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$ satisfying $(\sin \theta+\cos \theta)^{2}=2$.
5) Suppose the terms a_{n} of a convergent sequence $\left\{a_{n}\right\}$ satisfy the following recursive formula:

$$
a_{1}=\frac{1}{2}, \quad a_{n}=\frac{\frac{1}{8}}{\frac{1}{4}+a_{n-1}} \quad \text { for } \quad n>1
$$

Find the limit of the sequence.
6) Evaluate $\lim _{x \rightarrow 0^{+}} x^{\sqrt{-\frac{1}{\ln x}}}$.
7) Name all prime numbers between 80 and 100 .
8) Find the area of the largest possible rectangle that has two of its vertices lying on the curve $y=12-x^{2}$ above the x-axis and its opposite pair of vertices lying on the x-axis.
9) Find all points (x, y) lying on the ellipse $x y+x^{2}+y^{2}=1$ where the tangent line to the ellipse has slope -1 .
10) If $s_{n}=\frac{n-1}{n+1}$ where s_{n} denotes the nth partial sum of the series $\sum_{n=1}^{\infty} a_{n}$, find the general term a_{n} of the series.
11) For what real numbers a is the matrix invertible

$$
\left[\begin{array}{ccc}
0 & 1 & a \\
a & -2 & -1 \\
-1 & a & 0
\end{array}\right]
$$

12) A bag consists of 6 red marbles and 3 blue marbles. If two marbles are randomly selected from the bag without replacement, what is the probability of picking one red marble and one blue marble?

Answers:

1) 2016
2) $\frac{1+\sqrt{5}}{2}$
3) $\frac{1}{\sqrt{24}}$
4) $\frac{5 \pi}{4}$
5) $\frac{1}{4}$
6) 0
7) $83,89,97$
8) 32
9) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$
10) $a_{1}=0, a_{n}=\frac{2}{n(n+1)}$ for $n>1$
11) all reals except $1, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}$
12) $\frac{1}{2}$
