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Abstract

Semaglutide, better known by its brand name Ozempic, is a drug used to treat Type 2

diabetes. It is a GLP-1 receptor agonist, meaning it activates the GLP-1 receptor, which

is vital for the regulation of insulin and glucose levels in the bloodstream. Ozempic has also

shown promise as a treatment for polycystic ovarian syndrome (PCOS), a hormone imbalance in

people with uteruses often characterized by an abnormal menstrual cycle and insulin resistance.

However, the mechanisms behind PCOS are not clearly understood, and the reasons behind the

effectiveness of Ozempic as a PCOS treatment remain unclear.

Using systems of ordinary differential equations, it is possible to model the menstrual cycle,

GLP-1 receptor activation and the release of insulin separately. Since GLP-1 receptors belong

to a class of receptors called G protein-coupled receptors, we can form hypotheses about the

relationship between Ozempic and PCOS by adapting general models of G protein-coupled

receptors to fit the specifications of GLP-1 receptors. We can also simulate the relationship

between GLP-1 and insulin at the macroscopic level using a system of differential equations that

accounts for the impact of insulin and glucose on this GLP-1-mediated feedback loop. The last

component of this overarching model is a system of differential equations representing the change

in hormone levels and ovarian follicle mass during the menstrual cycle, with a term reflecting

insulin-mediated testosterone production. By modifying each of these models to incorporate the

effects of Ozempic, we create a combined model to simulate the effects of Ozempic on GLP-1

receptors, insulin release, and ovarian testosterone production, connecting Ozempic and PCOS

mathematically.
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1 Introduction

Semaglutide, better known by its brand name Ozempic, has gained notoriety as a fast-acting weight-

loss drug. Ozempic was created as a second line treatment for Type 2 diabetes and obesity and is

part of a class of drugs called glucagon-like peptide-1 (GLP-1) receptor agonists [20]. These drugs

were developed to counter insulin resistance present in diseases like Type 2 diabetes by replicating

the amino acid structure of the incretin hormone GLP-1 and modifying it in a few key places to

extend its half-life [20]. Insulin resistance occurs when normal or elevated insulin levels have a

reduced impact on the removal of glucose from the bloodstream [40]. Since the activation of GLP-1

receptors on the exterior of pancreatic β−cells triggers the rise of insulin, extending the half life of

GLP-1 causes a higher concentration of insulin to be released into the bloodstream.

Polycystic ovarian syndrome (PCOS) is caused by a hormonal imbalance in people with uteruses,

and is characterized by various symptoms across 3 phenotypes. PCOS is currently poorly under-

stood, and there are no known direct treatments of the syndrome. Instead, doctors target symptoms

of PCOS, such as insulin resistance, irregular periods, weight gain and acne, in their treatment reg-

imens, which can include birth control pills and metformin [8, 42]. Metformin is another treatment

developed for Type 2 diabetes targeting insulin resistance, and has anecdotally been shown to ame-

liorate symptoms of PCOS [8]. While the mechanisms of insulin resistance in PCOS are unclear,

treating insulin resistance present in certain phenotypes of PCOS can be very effective.

After semaglutide became widely available, physicians, such as Dr. Melanie Cree BMC ‘99,

noticed that prescribing it to patients with treatment resistant PCOS was highly effective in easing

some of their worst symptoms [19]. However, the mechanisms behind this have not been studied,

and in the absence of scientific evidence backing this phenomenon, the FDA has not approved

semaglutide for the treatment of PCOS [19]. Dr. Cree is currently publishing the results of a

Phase 3 clinical trial she conducted this past summer, and is currently planning a large-scale study

to better understand why semaglutide can be effective in treating PCOS that has otherwise been

treatment resistant [19].

In the meantime, it is possible to use mathematical modeling to examine the various mechanisms

underlying GLP-1 receptor dynamics, insulin-glucose-incretin hormone dynamics and hormonal

regulation of the menstrual cycle. In this paper, we are looking to clarify the connection between

insulin resistance and testosterone levels in people with PCOS, and how introducing semaglutide as

a longer-lasting form of GLP-1 effects this system. By simulating the effect of an extended GLP-1

half-life on insulin release and the subsequent insulin-mediated testosterone production, we see how

this could affect reproductive hormone levels in people with PCOS.

2 Biological Background

The mechanisms underlying polycystic ovarian syndrome are complex, as are those underlying

glucose-insulin dynamics. Understanding the scope of the models in this paper requires under-
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standing these mechanisms, as well as the biochemical properties of semaglutide and glucagon-like

peptide 1. We will first review the biological processes behind insulin synthesis and release and

insulin signaling. Then, we will provide an overview of the hormones glucagon and GLP-1, as well

as the GLP-1 receptor agonist semaglutide, or Ozempic. Finally, we will cover the dynamics of

the menstrual cycle and how PCOS impacts the hormone balance necessary to maintain a healthy

menstrual cycle.

2.1 Insulin

Insulin is a hormone secreted by β−cells in the islets of Langerhans region of the pancreas for the

purpose of lowering blood glucose levels [31].

2.1.1 Insulin synthesis and release

Insulin is produced in the β−cell, shown in Figure 1, and then stored in granules until its secretion

into the bloodstream [31]. This release is governed by a large influx of calcium (Ca2+) ions into the

cell [31]. This can occur when glucose enters the β−cell through glucose transporter-2 (GLUT-2)

receptors on the exterior of these cells [31].

Figure 1: Schematic of a pancreatic β-cell [27].

After glucose enters the β−cell, as shown in step (1) in Figure 2, it is metabolized into adenosine

triphosphate, or ATP, which provides energy to cells and closes the β−cell’s KATP channels (2)

[31]. KATP channels are ATP-sensitive potassium channel proteins that allow K+ ions to enter
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and exit the β−cell [31]. At low glucose concentration, KATP channels allow K+ ions to enter

the β−cell, generating an “excess of negative charges” inside the cell due to the attraction of

positively charged ions to negatively charged particles [31]. This influx of K+ ions into the β−cell

also creates a negative membrane voltage on the exterior of the cell [31]. However, once the newly

metabolized ATP closes the KATP channels, the membrane voltage becomes positive, leading to the

depolarization of the β−cell membrane and a change in the cell’s electrical activity [31]. This new

electrical activity and resulting membrane voltage change opens the β−cell’s voltage-dependent

calcium channels (3), or VDCCs, which allows for an influx of Ca2+ ions into the β−cell (4) [31].

This further depolarizes the cell membrane, promoting the release of insulin granules into the

bloodstream (5) [31]. Insulin secretion then happens in two phases: a rapid initial phase in which a

high concentration of insulin is released in a 5 minute period, followed by an extended phase where

insulin is gradually released [31]. However, only a small percentage of a β−cell’s insulin granules

are released during this process [31].

Figure 2: Diagram depicting initial insulin release [31].

2.1.2 Insulin signaling

Once released into the bloodstream, insulin plays a crucial role in many of the body’s metabolic

processes. Insulin first binds to insulin receptors present on a cell’s exterior [40]. This triggers

a signaling cascade, resulting in the activation of insulin responsive substrate (IRS) proteins in

the cell [40]. After this process is complete, IRS proteins can bind to signaling molecules and

mediate insulin’s role in a number of intracellular processes [40]. Insulin lowers blood glucose levels
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in part by aiding in the “facilitated diffusion of glucose into fat and muscle tissue” [40]. In this

process, phosphorylated IRS proteins move GLUT-4 receptors to the cell membrane, allowing for an

increased glucose uptake as well as glycogen synthesis [40]. Insulin increases protein synthesis and

mRNA transcription in various types of cells and tissues and fatty acid synthesis in fat tissue, liver

cells, and mammary glands [40]. Insulin also suppresses gluconeogenesis, or glucose synthesis, from

amino acids in muscle tissue [40]. Overall, insulin is the central hormone in the body’s regulation

of “cellular energy supply and macronutrient balance” [40].

2.1.3 Insulin resistance

Due to the importance of insulin in the body’s most critical metabolic processes, insulin resistance

can have widespread and damaging effects. Insulin resistance is thought to originate in insulin

signaling defects after binding to the insulin receptor [40]. For example, in muscle and adipose

tissue, insulin resistance results in decreased movement of GLUT-4 receptors, which impairs glyco-

gen synthesis [40]. In patients with type 2 diabetes, there is an significant reduction in pancreatic

β−cell mass in addition to insulin resistance, which leads to insufficient insulin production [4].

Treatment for diabetes has historically focused on supplementing a diminished insulin output with

insulin injections and medication to increase insulin sensitivity, such as metformin or drugs that

replicate the insulin-stimulatory effects of glucagon-like peptide 1 (GLP-1), an incretin hormone

that is synthesized in the intestine [4, 27]. This new class of drugs is known as GLP-1 receptor

analogs, or GLP-1 RAs, and they have been shown to increase both insulin production and β−cell

mass [4, 20]. In order to enhance the general understanding of the biological properties of GLP-1,

it is important to first discuss the biological properties of glucagon.

2.2 Glucagon and glucagon-like peptide 1 (GLP-1)

Glucagon, which stands for glucose agonist, was discovered during development of a more efficient

insulin purification process [27]. Glucagon, which was initially extracted from the pancreas, acts

alongside insulin to balance blood glucose levels [27]. While insulin lowers blood glucose, glucagon

both raises glucose levels and stimulates insulin secretion to maintain balanced blood glucose levels

[27].

The initial discovery of glucagon showed that the hormone originates from the islets of Langer-

hans in the pancreas, which contain both α− and β−cells [27]. More specifically, the pancreas could

no longer produce glucagon when its islet α-cells became damaged or compromised in some way

[27]. Islet α-cells in the pancreas can be further categorized as α1-cells or α2-cells, and glucagon

originates from α2-cells [27]. Glucagon-like material was also discovered in the intestine through

the usage of radioimmunoassays [27]. However, this intestinal glucagon-like material is distinctive

from pancreatic glucagon; it is “heterogeneous, comprising several fractions of different molecu-

lar size. . . with apparently distinct biological actions relative to pancreatic derived glucagon” [27].

While pancreatic glucagon originates from pancreatic α2-cells, this glucagon-like material originates
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from intestinal L-cells, which differ from α-cells in form and structure [27]. Despite their biolog-

ical distinctions, though, it was discovered that the glucagon-like material still stimulates insulin

secretion like pancreatic glucagon, which implied that this intestinal material was either a different

substance unrelated to glucagon or different forms of pancreatic-derived glucagon [27]. This new

material was significantly larger than glucagon, lending credibility to the theory that glucagon is

derived from a large “precursor” molecule which is split into several distinct fractions with differing

sizes and functions [27]. This precursor was identified and classified as intestinal proglucagon [27].

Intestinal proglucagon is split into 4 distinct peptide hormones and 2 smaller peptides [27]. One of

these distinct peptide hormones is a glucagon-related peptide aptly named glucagon-like peptide 1,

a 30-amino acid often abbreviated as GLP-1 [20, 27].

GLP-1 is secreted by intestinal cells in response to food intake [4, 27]. GLP-1 also lowers

food intake and glucagon secretion [20]. It is categorized as an incretin hormone because of its

insulinotropic properties [4, 27]. GLP-1 stimulates insulin secretion in pancreatic β-cells through

the activation of the GLP-1 receptor, causing a cascading effect similar to the one present in

glucose-dependent insulin release [4, 27]. GLP-1 receptors are G protein-coupled receptors, and they

specifically couple to Gs proteins [39, 41]. G proteins form the basis of numerous “transmembrane

signaling systems” in a variety of cells [39]. Gs proteins in particular mediate glucose dependent

insulin release in the β−cells through the stimulation of the adenylyl cyclase (AC) system, which

increases production of cyclic adenosine monophosphate, or cAMP [4, 27, 39]. It is also theorized

that G proteins play a role in the stimulation of K+ ion channels and Ca2+ ion channels [22].

Prior to the activation of the GLP-1 receptor (GLP-1R), the inactive Gs protein is a het-

erotrimeric complex composed of α, β, and γ subunits, with a molecule of guanosine diphosphate,

or GDP, bound to the α subunit, as shown in Figure 3 [22]. When GLP-1 binds to the GLP-1R, as

shown step (1) of Figure 3, it first activates this Gs protein complex, which allows it to couple to

the GLP-1R from the cell’s interior (2) [22]. Then, the GDP molecule is converted into guanosine

triphosphate (3), or GTP, and the Gs protein complex dissociates into an α subunit bound to a

GTP molecule and the bound β and γ subunits (4) [22, 23]. The α-GTP complex activates the

AC system, which allows ATP to be converted into cAMP [4, 23, 27]. The βγ-complex can also

activate certain forms of adenylyl cyclase [39]. The GTP molecule then undergoes hydrolysis to

become a GDP molecule (5), and the α-GDP complex combines with the βγ complex to form a

new heterotrimer (6) [22, 23].
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Figure 3: Diagram showing the activation of the GLP-1 receptor and the G protein complex [22].

As shown in Figure 4, the increase in cAMP due to GLP-1R binding (1) stimulates protein

kinase A (PKA) (2), which controls the activity of KATP channels and VDCCs [27]. PKA inhibits

KATP channels so potassium ions can not exit the β-cell (3) [27]. At the same time, PKA opens the

VDCCs, allowing an influx of Ca2+ ions into the β-cell (4) [25, 27]. The inflow of Ca2+ depolarizes

the cell membrane and promotes the release of insulin granules (5) [25, 27, 35]. At a certain point,

the GLP-1R bound to the GLP-1 ligand is desensitized [27]. However, the mechanisms of this

receptor desensitization are not yet completely understood [27].

In addition to promoting insulin secretion from β−cells, GLP-1 promotes β−cell proliferation

and survival [4]. Since diabetes results when there is an “inadequate functional mass of β−cells,”

using GLP-1 to treat type 2 diabetes, which results from the “progressive deterioration of β−cell

mass and function,” is the next logical step in the development of effective diabetes treatment [4].

However, GLP-1 has a half life of less than two minutes, as it is quickly metabolized by dipeptidyl

peptidase-4 (DPP4) [4, 27]. Therefore, in order to fully harness the insulinotropic properties of

GLP-1, it is necessary to explore GLP-1 RAs, a class of medications that replicate the properties

of GLP-1 and extend its half life.
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Figure 4: Diagram depicting GLP-1 receptor signaling in β−cells and the subsequent insulin secre-

tion [27].

2.3 Semaglutide

Several GLP-1 RAs were developed prior to the invention of semaglutide, namely liraglutide [20].

These medications were created to replicate the properties of GLP-1 in a molecule with an extended

half life [20]. This was accomplished by modifying the GLP-1 amino acid chain so it could effectively

bind to human serum albumin [20]. Albumin is a plasma protein produced in the liver [20]. Its

longevity, abundance and stability make it the ideal candidate for binding GLP-1 amino acids to

extend the half-life of GLP-1 analogs [20].

By modifying certain amino acids on the GLP-1 peptide chain, as shown in Figure 5, researchers

were able to create a molecule that reversibly binds to albumin; that is, it is able to uncouple itself

from the albumin binding, activate the GLP-1 receptor and then rebind to the albumin [20]. It is

also partially protected from rapid metabolism by DPP-4 enzymes [20]. The mechanism for this

process is currently unclear, although the current theory is that the part of the molecule not bound

to the albumin is able to bind to the GLP-1R [20]. This new molecule was called liraglutide, and

was made available as a GLP-1 RA [20].
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Figure 5: Diagram comparing the amino acid chains of liraglutide and semaglutide. Image taken

and modified from [20].

However, liraglutide requires a once-daily subcutaneous injection, which made the drug inac-

cessible to some patients [20]. Therefore, researchers sought to modify liraglutide to make it a

once-weekly injection [20]. By ensuring that the resulting medication had the “highest albumin

affinity combined with GLP-1R potency,” they created a once weekly injectible medication known

as semaglutide, or Ozempic [20]. Semaglutide has been found to cause a greater reduction in insulin

resistance compared to other GLP-1 RAs [20]. The overall structure of semaglutide is very similar

to human GLP-1, and the less-frequent injection cycle makes it more accessible to patients who

greatly benefit from GLP-1 RAs [20]. A more recent development is the advent of oral semaglu-

tide, which requires a once-daily dose [37]. While the connection between PCOS treatment and

semaglutide is still unclear, there exists promising signs of the medication’s effectiveness, due to

existing evidence of GLP-1 RAs being an effective treatment for PCOS [37].

2.4 Polycystic ovarian syndrome (PCOS)

GLP-1 RAs are emerging as a new class of drugs able to treat PCOS, and by developing a better

understanding of PCOS, we can hypothesize the link between semaglutide and PCOS. Polycystic

ovarian syndrome is a hormonal imbalance in people with uteruses that can result in various,

seemingly unrelated symptoms. There are three phenotypes of PCOS, and a person meets the

diagnostic criteria for PCOS if they experience 2 of the 3 following phenomena: absence of ovulation

or irregular ovulation (oligo-anovulation), high levels of androgens (hyperandrogenism) and ovarian

growths [7, 10]. Additionally, acne, excess hair growth, weight gain and oily skin are symptoms
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of PCOS, but these symptoms on their own are not typically indicative of a health condition,

making obtaining a PCOS diagnosis difficult. Irregular periods in general, including no menstrual

periods, frequently missed periods and very heavy periods, are also symptoms of PCOS [10]. PCOS

is commonly associated with infertility and changes in physical appearance, and while these are

symptoms of PCOS, people with PCOS are also at a higher risk for Type 2 diabetes, heart disease,

and endometrial cancer [10]. The mechanism of hyperandrogenism in PCOS is currently unknown,

and PCOS in general is very poorly understood [7].

2.4.1 Menstrual cycle dynamics

In order to understand PCOS, it is important to understand the dynamics of the menstrual cycle.

As shown in Figure 6, the menstrual cycle is divided into 3 main phases centered around the

development of ovarian follicles, or sacs containing eggs not yet ready for sperm fertilization: the

follicular phase, ovulation and the luteal phase [15]. The average length of a normal menstrual

cycle in an adult female is 28 days, with the follicular phase and luteal phase each lasting about

14 days [17]. The follicular phase begins when blood levels of follicle stimulating hormone, or

FSH, rise and promote the growth of 6-12 primordial, or premature, follicles by adding layers of

granulosa cells, which are the main synthesizers of estrogen, to the follicles [16, 17]. Testosterone,

an androgen hormone and precursor of the ovarian hormone estradiol, or E2, also plays a key role

in the E2 synthesis process by entering the granulosa cells to be converted into E2 [14]. During the

late stages of the follicular phase, the production of E2, increases, and testosterone levels also rise

[14, 17]. Ultimately only one follicle continues development, growing rapidly and synthesizing large

amounts of E2 [17]. At the midpoint of the menstrual cycle, one day after the maximum amount of

E2 is reached, the concentration of the luteinizing hormone (LH), which promotes ovulation, also

reaches its peak, and continues to rise and fall rapidly over the next 5 days. This period of LH

surge is essential for ovulation, which occurs within 24 hours of the surge’s conclusion [17].
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Figure 6: Illustration showing the stages of the menstrual cycle [26].

The luteal phase follows the completion of the ovulatory phase. This occurs once the follicle

is empty and has transformed into the corpus luteum, which synthesizes hormones such as proges-

terone, or P4, and inhibin A [18]. As a result, P4 and inhibin levels increase greatly after ovulation,

and both hormones reach their maximum concentration halfway through the luteal phase [17]. The

rise in P4 and inhibin causes a decrease in LH and FSH levels to prevent the development of follicles

prior to the start of the next follicular cycle [17]. Additionally, E2 and testosterone levels both

decline as P4 levels increase, with the decrease in testosterone being more pronounced, as shown in

Figure 16 [14]. If there is no pregnancy at the end of the menstrual cycle, the corpus luteum slowly

becomes inactive, causing a decline in P4 and Inh levels and a subsequent rise in FSH and LH

levels, signaling the beginning of the next menstrual cycle [17]. Figure 7 depicts normal hormone

dynamics over one menstrual cycle, providing a visualization for the phases where the levels of a

given hormone may be increasing or decreasing.
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Figure 7: A normal hormone profile over 31 days, or approximately 1 menstrual cycle. Inh is

inhibin concentration, and T is testosterone concentration [14, 17].

2.4.2 Hormonal imbalances

People with PCOS typically have heightened LH levels, due to low P4 levels, and a greater LH/FSH

ratio even during the luteal phase, which can cause premature follicular development [7]. The

excess of developing follicles can also result in abnormal growths in the ovaries. Additionally,

the larger LH/FSH ratio, as well as an increase in “serum androgen”, can inhibit ovulation [7].

Hyperandrogenic PCOS also typically results in hyperinsulinemia, or abnormally high blood insulin

levels [7]. It is for these reasons that doctors focus on balancing hormone levels and combatting

hyperinsulinemia in PCOS patients through hormone treatments such as birth control and insulin

sensitizing treatments such as metformin [8, 42].

The relationship between insulin sensitivity and PCOS remains unclear, but it is clear that

insulin resistance is often a major symptom of PCOS. Since GLP-1 RAs treat insulin resistance,

this provides a plausible connection between Ozempic and PCOS, as shown with the schematic in

Figure 8. Additionally, there is already scientific evidence that GLP-1 RAs such as liraglutide are

effective PCOS treatments, providing another tentative connection [37]. Analyzing the connection

between insulin and the ovarian system can provide key insights into the usage of semaglutide

to treat PCOS. Ovarian insulin receptors remain sensitive to insulin even in people struggling

with insulin resistance, but it is theorized that theca cells, which produce testosterone and other

androgens, synthesize excess androgens in response to hyperinsulinemia, leading to symptoms of
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hyperandrogenic and insulin resistant PCOS [14]. Additionally, people with PCOS are believed to

have a defect in their insulin-mediated glucose uptake, or IMGU [6]. In order to fully understand

potential effects of semaglutide on PCOS symptoms, it is necessary to understand current math-

ematical models of GLP-1 mediated insulin release and insulin mediated testosterone production

[2, 14, 38].

Figure 8: Schematic showing the possible connection between PCOS treatment and Ozempic.

3 Mathematical Background

Because of the prevalence of certain biochemical phenomena, such as enzyme reactions and cellular

receptor dynamics, researchers have developed mathematical models that are widely utilized across

many fields of scientific research. Using systems of ordinary differential equations, researchers can

study biological processes through a mathematical lens and generate simulations to gain a better

understanding of these processes. Before developing specific models, it is important to under the

guiding principles behind generalized models of cellular receptor activation.

3.1 Enzyme Kinetics

3.1.1 Chemical complexes

Because differential equations measure rates of change, they are used in the mathematical modeling

of biochemical reactions. A simple example of such a reaction is two compounds X and Y combining

to create a product Z at a rate given by the rate constant k1. Z is also able to decompose back into

X and Y at a rate k−1. The following reaction diagram represents this reaction and is extremely
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useful in creating the corresponding mathematical model:

X + Y
k1−−⇀↽−−
k−1

Z.

The rate of change of the concentrations of each product with respect to time would be the

difference between the rate of change in concentration through the forward reaction and the rate of

change in concentration through the backwards reaction [9]. Additionally, this reaction is governed

by the law of mass action, which holds that the rate of a chemical reaction is proportional to the

product of the concentrations of the reactants [9]. Therefore, the system of ordinary differential

equations representing this system is given by

dx

dt
= k−1z − k1xy,

dy

dt
= k−1z − k1xy,

dz

dt
= k1xy − k−1z,

where x, y and z are the concentrations of X, Y and Z respectively.

The ratio of the backwards reaction rate to the forwards reaction rate given by k−1

k1
is the disso-

ciation constant, often represented as KD [41]. The dissociation constant measures the propensity

of a product to separate into its reactants under equilibrium conditions [41]. If the rate of a given

reaction between two reactants is sufficiently fast, we can assume the reaction reaches instantaneous

equilibrium; that is, k1xy = k−1z, which implies xy = KDz.

3.1.2 Receptor signaling

The principles illustrated by this example also apply to mathematical models of more complicated

chemical reactions. One chemical dynamic that is often studied through the lens of mathematical

modeling is cell receptor signaling and receptor binding. Let C be an external molecule binding to

an empty receptor, denoted by X0, at a rate of k1 and let X1 be the molecule-receptor complex

that is created once the molecule binds to the receptor [9]. It is possible for C to unbind from X0

at a rate of k−1 [9]. However, some of C enters the cell and becomes a new product P at a rate

k2, so we are left with P and the empty receptor X0 [9]. This reaction is not reversible, so we

only have the forward reaction in this case [9]. This process can be illustrated with the following

chemical reaction diagrams [9]:

C +X0
k1−−⇀↽−−
k−1

X1,

X1
k2−→ P +X0.

If c, x0, x1, and p are the concentrations of each molecule or compound in this process, the system

of differential equations obtained from this reaction is

dc

dt
= −k1cx0 + k−1x1,
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dx0
dt

= −k1cx0 + k−1x1 + k2x1,

dx1
dt

= k1cx0 − k−1x1 − k2x1.

dp

dt
= k2x1,

By adding dx0
dt and dx1

dt , we find that dx1
dt + dx0

dt = 0, implying that the total number of receptors

remains constant, a mathematical result that also makes sense physiologically since receptors are

neither created nor destroyed in this type of reaction process [9]. This is a common result of

enzymatic reactions, including receptor binding, and will be extremely useful in the development

of a model of GLP-1 receptor activation [9]. If r represents the initial receptor concentration, then

x0 + x1 = r, and we can rewrite either x0 or x1 in terms of r [9]. In this case, we set x0 = r − x1

and substitute this back into the system of differential equations [9]:

dc

dt
= −k1c(r − x1) + k−1x1 = −k1cr + (k1c+ k−1)x1, (1)

dx1
dt

= k1c(r − x1)− k−1x1 − k2x1 = k1cr − (k1c+ k−1 + k2)x1. (2)

Since these equations are not dependent on p, we can set aside dp
dt , which can be solved after the

solutions to dc
dt and dx1

dt are found [9].

Although there are variations in this model across more specific types of receptor binding, the

general principles remain the same, and there are common assumptions made across many types

of models of receptor dynamics. In particular, the instantaneous equilibrium assumption and the

assumption that total receptor concentration remains the same are crucial in our derivation of

a GLP-1 receptor model. Another concept central to modeling biological processes is Michaelis-

Menten kinetics.

3.2 Michaelis-Menten Kinetics

Equations modeling Michaelis-Menten kinetics develop general models of enzyme kinetics further

by making additional simplifying assumptions. Michaelis-Menten equations model reaction rates

under the assumption that there is an upper limit to the speed at which the reaction can occur [9].

A key assumption central to developing the general Michaelis Menten rate equation is the quasi-

steady state assumption, or the assumption that changes in a certain concentration are so minimal

that the overall concentration is essentially constant [9, 29]. In the case of a Michaelis-Menten rate

equation for a receptor model, we assume that the receptors are always at maximal capacity, so the

concentration of bound receptors remains constant [9]. Under this quasi-steady state assumption,

Equation (2) is 0, which means

0 = k1c(r − x1)− k−1x1 − k2x1 = k1cr − (k1c+ k−1 + k2)x1. (3)
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We then solve Equation (3) for x1 to get

x1 =
k1cr

k1c+ k−1 + k2
. (4)

Substituting Equation (4) into Equation (1) gives us

dc

dt
= −k1cr + (k1c+ k−1) ·

k1cr

k1c+ k−1 + k2
,

which can rewritten as
dc

dt
= rc

[
−k1 +

k1(k1c+ k−1)

k1c+ k−1 + k2

]
.

Multiplying k1(k1c+k−1)
k1c+k−1+k2

by 1/k1
1/k1

transforms dc
dt further:

dc

dt
= rc

[
−k1 +

k1c+ k−1

c+ k−1+k2
k1

]
.

Finally, combining the terms in the brackets gives us

dc

dt
= rc

[
−k1c− k−1 − k2 + k1c+ k−1

c+ k−1+k2
k1

]
=

−k2rc

c+ k−1+k2
k1

.

LetKmax = k2r be the maximum velocity of the reaction, and letKm = k−1+k2
k1

be the concentration

of C where the reaction velocity is half of Kmax [9]. Km is also called the Michaelis constant or

the half-maximal concentration [9]. Then, we have

dc

dt
= − Kmaxc

c+Km
.

Additionally, substituting Equation (4) into the expression for dp
dt yields

dp

dt
= k2

k1cr

k1c+ k−1 + k2
,

and dividing both the numerator and the denominator by k1 gives us

dp

dt
=

k2cr

c+ k−1+k2
k1

.

Substituting Kmax and Km into this equations gives us the Michaelis-Menten equation

dp

dt
=

Kmaxc

c+Km
= v, (5)

where v is the velocity, or rate, of the reaction [9]. This makes sense physiologically, since if the

concentration of reactant C is decreasing at a rate of Kmaxc
c+Km

, then the concentration of the product

of the chemical reaction P should increase at the same rate. Figure 9 provides a qualitative plot

of v as a function of c to better visualize the behavior of Michaelis-Menten kinetics.
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Figure 9: A general Michaelis-Menten curve. It is clear from this diagram that the higher Km is,

the greater the concentration of substrate c required to increase the reaction rate v [34].

The assumptions made in the process of deriving the general Michaelis-Menten equation can

not be made in all circumstances. The assumption of the quasi-steady state means that at least

one receptor population remains essentially constant, which is not always the case. However, this

rate equation is highly useful in modeling many of the simplest cases of enzymatic reactions, and

is used in both our GLP-1 receptor model and the addition of an Ozempic dosage to our models.

Some biological processes that fall in the purview of enzyme and Michaelis-Menten kinetics are

so widely studied that general models of these processes have been made that are then modified

and adapted in more specific scenarios. The activation of G coupled protein receptors is one such

process [3, 22].

3.3 Models of G Protein Coupled Receptors

Once receptors are activated, they need a way to transmit signals. As previously described, G

protein-coupled receptors use G proteins to conduct their signaling once activated. To model this

process more generally, we can describe it as a series of enzymatic reactions [22]. We can then

provide a model for GLP-1 receptors specifically [38].

3.3.1 General model of G protein-coupled receptors

First, a ligand L binds to an empty receptor R to create a ligand-bound receptor complex LR:

L+R
k1−−⇀↽−−
k−1

LR.

Then, the side of the G protein complex containing the GαGDP subunit binds to the LR complex

from inside the cell, so we initially assume that only GαGDP binds to LR to create the complex
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LRGαGDP [22]:

LR+GαGDP
k2−−⇀↽−−
k−2

LRGαGDP.

After the formation of LRGαGDP , the GDP molecule becomes GTP, a reaction that is not included

in the original model. In the interim, the LR complex is bound to the G protein complex G without

GDP or GTP, so we have the complex LRG:

LRGαGDP
k3−−⇀↽−−
k−3

LRG+GDP.

Once GDP becomes GTP and binds to the G protein complex again, we get the complex LRGαGTP :

LRG+GTP
k4−−⇀↽−−
k−4

LRGαGTP.

Once fully activated, the GαGTP compound detaches from the LR and activates other processes

within the cell, creating a product P :

LRGαGTP
k5−→ LR+GαGTP,

GαGTP
k6−→ P.

Based on these reactions and the principles of modeling enzyme kinetics, we obtain to following

system of differential equations, where brackets indicate concentration of a molecule or compound

[9]:

d[LR]

dt
= k1[L][R] + k−2[LRGαGDP ]− k−1[LR]− k2[GαGDP ][LR] + k5[LRGαGTP ],

d[LRGαGDP ]

dt
= k2[GαGDP ][LR] + k−3[GDP ][LRG]− k−2[LRGαGDP ]− k3[LRGαGDP ],

d[LRG]

dt
= k3[LRGαGDP ] + k−4[LRGαGTP ]− k−3[GDP ][LRG]− k4[LRG][GTP ],

d[LRGαGTP ]

dt
= k4[LRG][GTP ]− k−4[LRGαGTP ]− k5[LRGαGTP ],

d[GαGTP ]

dt
= k5[LRGαGTP ]− k6[GαGTP ].

Additionally, this model assumes that total extracellular ligand concentration [L] is constant, so
d[L]
dt = 0. This model also assumes the total receptor concentration is a constant value [RT ], where

[RT ] = [R] + [LR] + [LRG] + [LRGαGTP ] + [LRGαGDP ].

While this is a good general model of G coupled protein receptors, it does not account for

important steps in the activation process, such as the separation of GαGTP from the G protein β

and γ subunits and the desensitization of the activated receptors [22]. The GLP-1 receptor model

developed in this paper, based on results from Takeda et al., will fit a general model of G protein-

coupled receptors to the specific properties of GLP-1 receptors while accounting for these missing

pieces [38].
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3.3.2 Model of GLP-1 receptors

It is important to understand the existing mathematical models of GLP-1 receptor signaling in

pancreatic β−cells in order to fully understand how Ozempic affects insulin release. Takeda et al.

created a system of ordinary differential equations to describe the mechanisms of GLP-1 receptor

activation and the subsequent increase in cAMP concentration [38]. Figure 10 shows the process of

GLP-1 receptor activation depicted in Figure 3 as a series of chemical reactions, which forms the

basis for the Takeda et al. model [22, 38].

Figure 10: Reaction diagram showing GLP-1 receptor activation with rate constants. The variables

in the yellow boxes can be modeled by the general G protein-coupled receptor model, with GLP-1 as

the ligand [22]. Densensitized receptors only move from the populations of bound receptors, LR and

LRG. Due to the rate at which GLP-1 and G combine with the receptor to create LRG, a receptor

bound with both the GLP-1 ligand and the Gs complex, which is extremely rapid compared to the

other reactions in the system, the reactions in the red rectangle are assumed to be at instantaneous

equilibrium. Image taken and modified from [38].

[R] is the concentration of free, inactivated receptors, [LR] is the concentration of GLP-1 bound

receptors, and [LRG] is the concentration of receptors bound to GLP-1 on the cell exterior and

a complete G protein complex on the cell’s interior [38]. The mechanisms behind GLP-1 receptor

desensitization are unclear; however, biochemical evidence indicates that the desensitization process

occurs in two phases [38]. Takeda et al. include the desensitization phase in their model in order to

better understand the kinetics of the “reaction cascade during GLP-1 stimulation”, which had not

been determined in β−cells at the time their paper was published [38]. [RD1] is the concentration

of receptors in the first phase of deactivation, and [RD2] is the concentration of receptors in the
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second, more gradual phase of deactivation [38]. [Gβγ ] is the total concentration of combined G

protein β and γ subunits and [G] is the mass of heterometric, or combined, Gs protein subunits

[38]. [GαGTP ] and [GαGDP ] represent the concentrations of G protein α subunits bound to GTP

and GDP respectively [38].

Takeda et al. provide 5 ordinary differential equations modeling the fluctuations in concentra-

tions of desensitized receptors, GαGTP , GαGDP , and Gβγ :

d[RD1]

dt
= k1([LR] + [LRG])− k2[RD1]− k3[RD1] + k4[RD2], (6)

d[RD2]

dt
= k3[RD1]− [k4RD2], (7)

d[GαGTP ]

dt
= k5[LRG]− k6[GαGTP ], (8)

d[GαGDP ]

dt
= k6[GαGTP ]− k7[GαGDP ][Gβγ ], (9)

d[Gβγ ]

dt
= k5[LRG]− k7[GαGDP ][Gβγ ]. (10)

Additionally, the total receptor mass, given by [Rt], and the total Gs protein mass, given by

[Gt], are represented by auxiliary Equations (11)-(14) [38]:

[Rt] = [Ra] + [RD1] + [RD2], (11)

[Ra] = [R] + [LR] + [LRG], (12)

[Gt] = [Gαβγ ] + [Gβγ ], (13)

[Gαβγ ] = [G] + [LRG]. (14)

[Ra] is the mass of activated GLP-1 receptors, and [Gαβγ ] represents the complexes that contain

the fully combined Gs trimer [38].

From a mathematical standpoint, this model as presented is only partially complete. There

are no differential equations describing the change in concentrations of the free receptors, GLP-1

bound receptors, and complete Gs complexes, which are crucial components of the GLP-1 receptor

activation process. To fully understand the GLP-1 receptor dynamics presented by Takeda et al.,

a complete model is essential. Therefore, we will derive the missing differential equations given by
d[R]
dt , d[LR]

dt , and d[G]
dt to develop this completed model of GLP-1 receptor signaling.

4 Model Development

The beauty of mathematical models is their ability to convey crucial information about biological

processes without the need to run multiple trials on human subjects. By running multiple simula-

tions, the range of possibilities is narrowed down, and conducting efficient clinical trials becomes
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easier. In order to better understand the biological processes underlying the incretin effect, the

complex relationship between insulin and testosterone, and GLP-1 receptor signaling in pancreatic

β−cells, we can examine systems of differential equations.

The model developed in this paper consists of 2 major submodels, as outlined in Figure 11. We

will first provide separate overviews of the GLP-1 receptor activation model, the incretin model,

and the model of insulin-mediated testosterone production. Then, we will create our combined

model in Figure 11 by incorporating the influence of Ozempic.

Figure 11: Overview of the combined model presented in this paper.

4.1 Completed Model of GLP-1 Receptor Signaling

The original Takeda et al. model is missing important differential equations d[R]
dt , d[LR]

dt , and d[G]
dt ,

but it is possible to derive them using the equations given and the model assumptions. This

model assumes total masses [Rt] and [Gt] remain constant, so d[Rt]
dt and d[Gt]

dt both equal zero [38].

Therefore, taking the first derivative of Equations (11) and (13) with respect to time yields

0 =
d[R]

dt
+

d[LR]

dt
+

d[LRG]

dt
+

d[RD1]

dt
+

d[RD2]

dt
, (15)

0 =
d[G]

dt
+

d[LRG]

dt
+

d[Gβγ ]

dt
. (16)

Due to the assumption that the reactions between GLP-1 and R and LR and G reach instantaneous

equilibrium, we also have that Kd1 [LR] = [GLP1][R] and Kd2 [LRG] = [LR][G], where [GLP1] is
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the concentration of GLP-1, Kd1 is the dissociation constant for GLP-1 and R, and Kd2 is the

dissociation constant for LR and G. This implies

[LR] =
[GLP1][R]

Kd1

, (17)

[GLP1] =
Kd1 [LR]

[R]
, (18)

[LRG] =
[LR][G]

Kd2

. (19)

We can also write [LRG] in terms of the concentrations of receptors and the concentrations of Gs

proteins using Equations (11) and (13), which imply that [LRG] = [Rt]− [R]− [LR]− [RD1]− [RD2]

and [LRG] = [Gt]− [G]− [Gβγ ].

We first take the derivatives of Equations (17) and (19) with respect to time, giving us

d[LR]

dt
=

1

Kd1

[
[GLP1]

d[R]

dt
+ [R]

d[GLP1]

dt

]
, (20)

d[LRG]

dt
=

1

Kd2

[
[LR]

d[G]

dt
+ [G]

d[LR]

dt

]
. (21)

In this initial construction of the expanded Takeda et al. model, we can assume that at the cellular

level the concentration of the ligand outside of the cell is constant due to the high volume of

hormones released during certain body functions compared to the volume of the cell [22]. Therefore,
d[GLP1]

dt is 0, so Equation (20) becomes

d[LR]

dt
=

[GLP1]

Kd1

· d[R]

dt
. (22)

Then, combining Equations (10), (16), and (21) gives us

0 =
d[G]

dt
+

[LR]

Kd2

· d[G]

dt
+

[G]

Kd2

· d[LR]

dt
+ k5[LRG]− k7[GαGDP ][Gβγ]

We then solve this equation for d[G]
dt by first rearranging it to get

k7[GαGDP ][Gβγ ]− k5[LRG]− [G]

Kd2

· d[LR]

dt
=

d[G]

dt

(
1 +

[LR]

Kd2

)
.

By dividing both sides of this equation by 1+ [LR]
Kd2

and substituting [Gt]− [G]− [Gβγ ] in for [LRG],

we derive the differential equation d[G]
dt :

d[G]

dt
=

k7[GαGDP ][Gβγ ]− k5 ([Gt]− [G]− [Gβγ ])− [G]
Kd2

· d[LR]
dt

1 + [LR]
Kd2

. (23)

The term 1 + [LR]
Kd2

in the denominator reflects the inhibitory nature of GLP-1 receptor binding on

Gs trimer accumulation, as the activation of the receptor causes the trimer to split. Finally, to find
d[R]
dt , we first combine Equations (6), (7), (15) to get

0 =
d[R]

dt
+

d[LR]

dt
+

d[LRG]

dt
+ k1([LR] + [LRG])− k2[RD1].
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Since [LRG] = [Gt]− [G]− [Gβγ ], it follows that
d[LRG]

dt = −d[G]
dt − d[Gβγ ]

dt , so we substitute this into

the above equation along with Equation (10):

0 =
d[R]

dt
+

d[LR]

dt
− d[G]

dt
− (k5[LRG]− k7[GαGDP ][Gβγ ]) + k1([LR] + [LRG])− k2[RD1].

Then, by rearranging this equation and combining it with Equations (22) and (23), we get

k2[RD1]− k1([LR] + [LRG])− (k7[GαGDP ][Gβγ ]− k5[LRG])

=
d[R]

dt
+

[GLP1]

Kd1

· d[R]

dt
+

[G]
Kd2

· [GLP1]
Kd1

1 + [LR]
Kd2

· d[R]

dt

−
k7[GαGDP ][Gβγ ]− k5[LRG]

1 + [LR]
Kd2

,

By adding the term
k7[GαGDP ][Gβγ ]−k5[LRG]

1+
[LR]
Kd2

to the left side of the equation, we can factor out

(k7[GαGDP ][Gβγ ] − k5[LRG]) from two terms on the left side, and we can factor out d[R]
dt from

every term on the right side of the equation to get

k2[RD1]− k1([LR] + [LRG]) + (k7[GαGDP ][Gβγ ]− k5[LRG])

 1

1 + [LR]
Kd2

− 1


=

d[R]

dt

1 +
[GLP1]

Kd1

+

[G]
Kd2

· [GLP1]
Kd1

1 + [LR]
Kd2

 .

We can also simplify 1

1+
[LR]
Kd2

− 1 and

[G][GLP1]
Kd1

Kd2

1+ LR
Kd2

:

1

1 + [LR]
Kd2

− 1 =
1−

(
1 + [LR]

Kd2

)
1 + [LR]

Kd2

=
− [LR]

Kd2

1 + [LR]
Kd2

= − [LR]

Kd2 + [LR]
,

[G][GLP1]
Kd1

Kd2

1 + LR
Kd2

=
[G][GLP1]

Kd1Kd2

· 1

1 + [LR]
Kd2

=
[G][GLP1]

Kd1(Kd2 + [LR])
.

Then, after substituting [Rt] − [R] − [LR] − [RD1] − [RD2] and [Gt] − [G] − [Gβγ ] for [LRG], the

equation for d[R]
dt is

d[R]

dt
=

k2[RD1]− k1([Rt]− [R]− [RD1]− [RD2])

1 + [GLP1]
Kd1

+ [G][GLP1]
Kd1

(Kd2
+[LR])

−
(k5([Gt]− [G]− [Gβγ ])− k7[GαGDP ][Gβγ ])

[
[LR]

Kd2
+[LR]

]
1 + [GLP1]

Kd1
+ [G][GLP1]

Kd1
(Kd2

+[LR])

, (24)
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where [LR]
Kd2

+[LR] is a Michaelis-Menten equation describing the reaction rate of [LR]. The inclusion

of the terms [GLP1]
Kd1

and [G][GLP1]
Kd1

(Kd2
+[LR]) in the denominator reflects how GLP-1 receptor binding and

GLP-1 and Gs protein complex interactions inhibit the accumulation of free receptors. It is impor-

tant to note that in the derivation of d[R]
dt , the second term initially contains (k7[GαGDP ][Gβγ ] −

k5[LRG]) in the numerator; however, we switch (k7[GαGDP ][Gβγ ]− k5([Gt]− [G]− [Gβγ ])) to be

(k5([Gt]− [G]− [Gβγ ])− k7[GαGDP ][Gβγ ]) to better fit the model results from Takeda et al. [38].

4.1.1 Adenylyl cyclase system submodel

Since cyclic AMP, or cAMP, is rapidly accumulated after the activation of a GLP-1 receptor and

is a primary contributor to the release of insulin from the β−cell, the Takeda et al. model also

contains a differential equation describing the change in concentration of cAMP after the activation

of the GLP-1 receptor, adapted from an earlier model of Ca2+-mediated regulation of cAMP and

G coupled protein receptors by Fridlyand et al. [11, 38]:

d[cAMP ]

dt
= VACt − VPDE . (25)

VACt gives the total activity of the adenylyl cyclase (AC) system activated by GαGTP , and VPDE

is the activity of phosphodiesterase (PDE), the enzyme that inactivates cAMP [1, 38]. VACt is given

in turn by the auxiliary equation

VACt = VAC + VACG
, (26)

where VAC is the activity of the part of AC system that maintains basal cAMP levels without

activitation by G proteins and VACG
is the activity of the part of AC system activated by G

proteins [38]. VAC is defined as

VAC = VmaxAC · 0.4

0.4 + [GαGTP ]
· [ATP ]

[ATP ] + 1030
, (27)

where VmaxAC is the maximum basal AC activity [38]. The term 0.4
0.4+[GαGTP ] reflects the baseline

activity of the GαGTP subunit in regulating the AC system without activation of the GLP-1

receptor and [ATP ]
[ATP ]+1030 is the ATP dependent basal AC activity [38]. VACG

is given by

VACG
= VmaxACG

·
[Gα]GTP

0.4 + [GαGTP ]
· [ATP ]

[ATP ] + 315

·
(
(1− fCdAC

) + fCdAC
· [Ca3CaM ] + [Ca4CaM ]

[Ca3CaM ] + [Ca4CaM ] + 0.348
· 75

75 + [Ca2+]

)
. (28)

VACG
is the product of Michaelis-Menten equations describing reaction rates of GαGTP , ATP and

calmodulin compounds (CaxCaM), which consist of multiple Ca2+ atoms and regulate both the

AC system and the PDE system [11, 38]. The inclusion of these equations in equation 28 reflects

the stimulatory effects of GαGTP , ATP , Ca3CaM , and Ca4CaM on the AC system when it is

activated by Gs proteins [11, 38]. The term 75
75+[Ca2+]

represents the inhibitory nature of free Ca2+
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atoms on the AC system [11, 38]. fCdAC
is the fraction of the AC system regulated by Gs proteins

that is dependent on Ca2+ [38]. The last term of Equation (25), VPDE , is defined as

VPDE = VmaxPDE

(
f [cAMP ]

[cAMP ] +KmL
+

(1− f)[cAMP ]

[cAMP ] +KmH

)
·
(
(1− fCdPDE

) + fCdPDE
· [Ca3CaM ] + [Ca4CaM ]

[Ca3CaM ] + [Ca4CaM ] + 0.348

)
. (29)

VmaxPDE is the maximal activity of the PDE system [11, 38]. Since evidence indicates there are two

different fractions of PDE that act on cAMP, f [cAMP ]
[cAMP ]+KmL

+ (1−f)[cAMP ]
[cAMP ]+KmH

is the sum of two Michaelis-

Menten equations, where f [cAMP ]
[cAMP ]+KmL

represents the activity of one fraction f of PDE on cAMP

regulation and (1−f)[cAMP ]
[cAMP ]+KmH

is the activity of the remaining fraction of PDE [38]. Additionally,

there is a form of PDE known as PDE1C that is sensitive to calmodulin compounds and plays an

extremely important role in cAMP degradation in β−cells [38]. The role of PDE1C is represented

in Equation (29) through the term (1− fCdPDE
) + fCdPDE

· [Ca3CaM ]+[Ca4CaM ]
[Ca3CaM ]+[Ca4CaM ]+0.348 [38].

For the purposes of model simplification and focusing on the role of GLP-1 receptor activation

on β−cell regulation as opposed to other complicated intracellular complexes, [Ca2+] and [ATP ] are

assumed to be constant [38]. [Ca3CaM ] and [Ca4CaM ], in addition to [Ca2CaM ] and [CaCaM ]

from the calcium-calmodulin reactions prior to the creation of Ca3CaM and Ca4CaM , are given

by the following equations from Fridlyand et al. [11]:

d[CaCaM ]

dt
= k1f [Ca2+][CaM ]− k1b[CaCaM ], (30)

[Ca2CaM ] =
k2f
k2b

[Ca2+][CaCaM ], (31)

[Ca3CaM ] =
k3f
k3b

[Ca2+][Ca2CaM ], (32)

[Ca4CaM ] =
k4f
k4b

[Ca2+][Ca3CaM ]. (33)

While the rate of the initial reaction of CaM and Ca2+ is not assumed to be at instantaneous

equilibrium, the subsequent reactions are, due to the rapid nature of these reactions compared to

other reactions within the β−cell, such as steady state and slow [Ca2+] and [cAMP ] oscillations

[11]. The rate constants in Equations (30)-(33) were taken from an earlier study by Yu et al. on

Ca2+ and cAMP regulation of neurons and adapted to fit β−cells [11, 43].

Although it is valid, based on previous models of G coupled protein receptors, to assume initially

that external GLP-1 concentration is constant, that does not provide a realistic picture of changes in

GLP-1 concentration as it interacts with GLP-1 receptors [22]. Now that we have a complete version

of the Takeda et al. model, we can include a differential equation representing the change in non-

constant GLP-1 concentration. Siewe and Friedman developed a mathematical model that simulates

the effect of Ozempic on GLP-1 concentration and contains a differential equation describing the
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rate of change of GLP-1 concentration, which we can modify to fit our current model [36]:

d[GLP1]

dt
= γL − µLR[GLP1][R]. (34)

γL is the “baseline secretion rate of GLP-1”, and µLR is the rate at which free GLP-1 concentration

diminishes as GLP-1 binds to free GLP-1 receptors [36]. Since we now have a non-zero d[GLP1]
dt ,

d[LR]
dt becomes

d[LR]

dt
=

1

Kd1

[
[GLP1]

d[R]

dt
+ [R]

d[GLP1]

dt

]
,

as initially described in Equation (20). Applying the same methods we used to initially derive d[R]
dt ,

the new equation for d[R]
dt under a non-constant GLP-1 concentration is

d[R]

dt
=

k2[RD1]− k1([Rt]− [R]− [RD1]− [RD2])

1 + [GLP1]
Kd1

+ [G][GLP1]
Kd1

(Kd2
+[LR])

−
(k5([Gt]− [G]− [Gβγ ])− k7[GαGDP ][Gβγ ])

[
[LR]

Kd2
+[LR]

]
+ [G][R]

Kd1
(Kd2

+[LR]) ·
d[GLP1]

dt

1 + [GLP1]
Kd1

+ [G][GLP1]
Kd1

(Kd2
+[LR])

. (35)

The term [G][R]
Kd1

(Kd2
+[LR]) ·

d[GLP1]
dt represents the interactions of Gs protein trimer and GLP-1 with

the free receptor during the binding process. The equation d[G]
dt remains unchanged, as all of the

changes are contained in the d[LR]
dt term.

The Siewe and Friedman model can also be used to add Ozempic to our model to simulate

the effect of Ozempic on GLP-1 receptors and cAMP accumulation in the β−cell [36]. However,

before proceeding with this additional modification, it is important to have an understanding of

the interactions between GLP-1 and insulin at the macroscopic level as well as the cellular level. To

that end, we will next examine a mathematical model of the incretin effect developed by Brubaker

et al. [2].

4.2 Model of the Incretin Effect

The incretin effect describes the release of hormones to stimulate insulin secretion in response to

glucose ingestion [2]. In addition to GLP-1, glucose-dependent insulinotropic peptide, or GIP, has

been identified as another major incretin hormone [2]. These hormones are released in response to

elevated glucose levels in the intestines to regulate blood sugar levels by stimulating insulin release

[2]. In order to analyze the dynamics of incretins and insulin and the effects of elevated incretin

levels on the release of insulin, Brubaker, et al. created a system of three ordinary differental

equations to model incretin levels, insulin levels and glucose levels of time after the introduction

of glucose into the duodenum, the first part of the small intestines [2, 30]. This rate of delivery of

100 grams of glucose, denoted DuodG(100g), to the duodenum can be modeled using the following
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piecewise function [2]:

DuodG(100g) =


0 if 0 ≤ t < 5

6.349− 0.0353t if 5 ≤ t ≤ 179.9

0 if 179.9 < t

, (36)

where time t is measured in minutes. The spike in the glucose delivery rate occurs approximately 5

minutes after liquid glucose ingestion, as this glucose is transferred very rapidly from the stomach

to the duodenum [2]. After glucose enters the duodenum, it is absorbed into the bloodstream and

distributed to the gastrointestinal tract via mesenteric circulation [2]. The rate of change in blood

glucose kinetics, denoted by RaGutG(100g), is given by Equation 37 [2]:

RaGutG(100g) =

0 if 0 ≤ t < 5

0.36(t− 5)1.05e−0.029(t−5) if 5 ≤ t
. (37)

Hepatic glucose balance, given by HepbalG, is the net absorption and production of glucose by

the liver [2]. After glucose is distributed to the GI tract, HepbalG is no longer at equilibrium and

becomes a time dependent parameter given by

HepbalG = HepbalGB +M(GB −Gluc)I. (38)

Gluc and I are state variables representing glucose and insulin levels respectively. GB is the basal

glucose level, given by Gluc(0), HepbalGB is the basal hepatic glucose balance, and M measures

“effects of counter-regulatory factors on the liver” and changes to reflect hypoglycemic conditions

[2]. The parameter values are given in Table 1 in Appendix 1.

Because GIP and GLP-1 are both believed to contribute to the incretin effect equally, Brubaker,

et al. created one differential equation to account for both hormones in the system:

dInc

dt
=

RaInc
V

+ k5DuodG − k6Inc, (39)

where RaInc represents the rate of introduction of incretin hormones over volume V , k5DuodG

measures the glucose levels in the upper GI tract and and k6Inc is the clearance rate of incretin

hormones from the GI tract [2]. In addition to modeling incretin kinetics, Brubaker et al. also

modeled insulin kinetics and glucose kinetics in this system. The differential equation representing

change in insulin levels in the system is given by

dI

dt
= k7Gluc1.3 + k8Inc− k9I + β, (40)

where k7Gluc1.3 reflects the influence of plasma glucose on accelerating the release of insulin,

k8Inc reflects the incretin effect on the β−cell, k9I is the clearance rate of insulin, and β is a

constant representing the influence of known regulators of the β−cell [2]. The differential equation

representing glucose kinetics in this system is given by

dGluc

dt
=

RaGutG

V
+

HepbalG
V

− k1Gluc1.3 − k2I + γ
dI

dt
. (41)
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As mentioned previously, RaGutG and HepbalG represent mesenteric circulation and balance of

glucose in the liver over a volume V [2]. Non-insulin mediated glucose uptake is represented by

k1Gluc1.3, while insulin-mediated glucose uptake is represented by k2I [2]. γ dI
dt reflects the impact

of changing insulin levels on glucose production and absorption [2]. By using MATLAB to solve

this system, we can visualize the fluctuations in insulin levels due to the incretin effect, as well as

changes in incretin and glucose levels over a period of 300 minutes. Figure 12 depicts the solutions

to Equations (39)-(41).
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Figure 12: Plasma insulin, incretin and glucose levels from time 0 to 300 minutes.

For the first 5 minutes after measurements begin, insulin, incretin and glucose remain at basal

levels. After glucose is ingested into the duodenum, incretin and insulin levels increase sharply.

Glucose levels peak around 25 minutes after initial glucose consumption, while insulin and incretin

levels peak around 50 minutes after initial consumption. The plasma levels of all three substances

then gradually decline until they reach basal levels again around the 180 minute mark. Glucose

level dip below basal levels of 4 mmol/L before returning to initial levels.

We can see from Figure 12 that an initial spike in glucose concentration in the GI tract leads

to a dramatic increase in plasma incretin concentration. This in turn causes an increase in insulin

concentration. The incretin effect becomes more apparent by setting DuodG equal to zero, which

forces incretins to remain at basal levels for the entire 300 minute period. Figure 13 depicts the

changes in insulin and glucose concentration when incretin concentration remains at the basal level

of 200 ng/L.
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Figure 13: Plasma insulin and glucose levels when plasma incretin concentration remains at basal

levels.

Under these conditions, glucose concentration reaches a peak level of approximately 9.5 mmol/L

and insulin reaches a peak concentration of 25 mU/L. The glucose levels are much higher than

they would be under normal incretin conditions, while insulin concentration is significantly lower

without the incretin effect. While insulin still increases in repsonse to increased glucose levels, the

link between insulin and incretin hormones is clear. GLP-1 plays a critical role in maintaining the

balance between insulin and glucose and is crucial in preventing insulin abnormalities.

The previously mentioned Siewe-Friedman model of Ozempic-mediated GLP-1 regulation also

contains a regulatory term for glucose levels, as GLP-1 and GLP-1 receptor agonists lower blood

glucose levels [20, 36]. We can use the Siewe-Friedman model to modify this model in addition to the

expanded Takeda et al. model to simulate the effects on Ozempic on insulin release. Before taking

that final step, however, we need to understand the relationship between insulin and testosterone

in the ovulatory cycle in order to form a connection between semaglutide and PCOS treatment.

The Graham-Selgrade model provides a mathematical basis for this relationship [14].

4.3 Model of Ovulatory Regulation

The Graham-Selgrade model is a system of 12 ordinary differential equations modeling the flu-

cuations in reproductive hormones and ovarian follicle growth during the menstrual cycle [14].

More specifically, the Graham-Selgrade model examines the effects of “insulin-mediated testos-
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terone production on ovulatory function,” providing insight into the crucial link between insulin

and testosterone [14].

As hyperinsulinemia is a symptom of many PCOS cases, it is critical to incorporate insulin

into a mathematical model of the ovulatory cycle. Research has found that reducing plasma insulin

levels by taking insulin sensitizing drugs, such as metformin and thiazolidiones, reduces testosterone

levels [14]. However, testosterone is important in the ovulatory cycle as a regulator of LH synthesis,

so it is important to maintain normal levels of the androgen [14]. The production and release of

pituitary hormones LH and FSH is modeled in a subsystem of 4 ordinary differential equations

[14]. These equations include both serum LH and FSH circulating in the bloodstream, indicated

by state variables LH and FSH respectively, and LH and FSH on reserve in the pituitary gland

that is released into the bloodstream, indicated by LHρ and FSHρ respectively.

dFSHρ

dt
=

vF

1 + cF,I
SΛ

KF,I+Λ

− kF
1 + cF,PP4

1 + cF,EE2
2

FSHρ, (42)

dFSH

dt
=

1

V
· kF

1 + cF,PP4

1 + cF,EE2
2

FSHρ − δFFSH, (43)

dLHρ

dt
=

[
v0L · T

KL,T + T
+ v1L · En

2

Kn
mL + En

2

]
· 1

1 + P4
KiL,P (1+cL,TT )

− kL
1 + cL,PP4

1 + cL,EE2
LHρ, (44)

dLH

dt
=

1

V
· kL

1 + cL,PP4

1 + cL,EE2
LHρ − δLLH. (45)

In Equation (42), vF is the velocity of the reaction which produces FSH, and the term SΛ
KF,I+Λ in

the denominator reflects the suppression of FSH synthesis during the luteal phase of the ovulatory

cycle [14, 17]. KF,I is the concentration of inhibin required to inhibit FSH synthesis, and the term

E2
2 in the denominator of

1+cF,PP4

1+cF,EE2
2
reflects the inhibitory effects of E2 on FSH release [14, 17].

Similarly, the term E2 in the denominator of
1+cL,PP4

1+cL,EE2
in Equations (44) and (45) reflects the less

pronounced inhibitory effect of E2 on LH release, which the presence of P4 in the numerators of

these terms reflects the positive effect of P4 on FSH and LH release [14, 33]. 1
V accounts for blood

FSH and LH concentration. kF and kL are the release rates of FSH and LH respectively, and δF

and δL are the clearance rates of FSH and LH [14].

In Equation (44), v0L is the maximal saturation rate of testosterone dependent LH synthesis

given by the term T
KL,T+T , where KL,T is the concentration of testosterone needed to promote LH

synthesis [14, 16]. v1L is the velocity of the reaction between E2 and LH and KmL is the half-

maximal concentration of LH [14, 16]. Heightened E2 levels over an extended period promote LH

synthesis, which is reflected in the Hill function
v1LE

n
2

Kn
mL+En

2
with a Hill coefficient of n = 8 [14, 33].

The Hill function increases rapidly as E2 levels rise to account for the rapid synthesis of LH during

this period [14, 17].

The appearance of P4 in the denominator of the term 1

1+
P4

KiL,P (1+cL,T T )

reflects the inhibitory

effects of P4 on LH synthesis [14]. However, it is currently theorized that testosterone inhibits P4’s
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suppressive effects, which would explain why people with hyperandrogenic PCOS have higher blood

LH concentration than normal [14]. This reduction in P4 mediated LH suppression is given by the

term KiL,P (1 + cL,TT ) [14]. cF,I , cF,E , cF,P , cL,T , cL,E , and cL,P are all dimensionless parameters

of E2, P4 and T , respectively [14]. The values of all parameters used in this first submodel can

be found in Table 3 in the appendix [14]. By using MATLAB to solve this system of differential

equations, we can better visualize the pituitary hormone dynamics during ovulation. Figure 14

depicts the solutions to Equations (42)-(45) over a 400 day period.

Figure 14: Pituitary hormone dynamics over 400 days.

The second subsystem of this model reflects follicular dynamics during the ovulatory cycle

[14]. The ovulatory cycle consists of the follicular phase Φ, the ovulatory phase Ω and the luteal

phase Λ [14]. LH support, which can be seen as a “permissive state during which normal luteal

activity, specifically luteal growth and hormone production can occur”, is given by Equation (49)

[14]. Modeling follicle dynamics plays a crucial role in enhancing understanding of ovulation and

of testosterone’s role in ovulation, as it is assumed that testosterone is responsible for increasing

FSH sensitivity [14].

dΦ

dt
= f0 ·

T

T0
+

 f1FSH2(
h1

1+ T
T0

)2

+ FSH2

− f2LH
2(

h2
1+cΦ,FFSH

)2
+ LH2

 · Φ, (46)
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dΩ

dt
=

f2LH
2(

h2
1+cΦ,FFSH

)2
+ LH2

· Φ− wSΩ, (47)

dΛ

dt
= wSΩ− l(1− S)Λ, (48)

dS

dt
=

ŝLHm

hms + LHm
· (1− S)− δsS. (49)

In Equation (46), T0 is initial testosterone levels, and f0 reflects the initial rate of follicular

growth in terms of follicular mass [14]. f1 represents the rate of follicular mass increase in response

to FSH, and the term h1

1+ T
T0

represents testosterone-mediated follicle sensitivity to LH [14]. f2

represents the rate at which a mature follicle ruptures into luteal cells and forms the corpus luteum

[14]. The term f2LH2(
h2

1+cΦ,F FSH

)2

+LH2

represents the transition from the follicular phase to the ovulatory

phase as mediated by FSH and LH [14]. In Equation (47), wSΩ represents the transition from the

ovulatory phase to the luteal phase as mediated by LH support [14].

In Equation (48), the term l(1−S)Λ is the rate of luteal regression, assuming that LH support

maintains a healthy corpus luteum and prevents premature formation of luteal cells [14]. The term
ŝLHm

hm
s +LHm in Equation (49) reflects the extreme sensitivity of support to LH [14]. It is important

to note that 0 ≤ S(t) ≤ 1, and luteal stage terms are multiplied by S to reflect a “lack of activity

in the absence of sufficient functional support by LH” [14]. δS reflects the decay of support in the

absence of LH [14]. Values for these parameters can be found in Table 4 of the appendix. Figure

15 depicts the solutions to Equations (46)-(49), allowing us to see the transition between phases.

Φ sharply decreases as Ω increases, and a rise in LH support prompts the start of Λ.
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Figure 15: Ovarian follicle mass and LH support over 400 days.

A third subsystem represents the synthesis of ovarian hormones and reflects the influence of

hyperinsulinemia on testosterone levels [14]. T reprsents serum testosterone in the bloodstream,

Tγ represents testosterone concentration in granulosa cells, E2 represents serum estradiol and P4

represents serum progesterone [14].

dT

dt
= t0 − δTT + [t1G1(F1 + cT,F2F2) + t2G1G2F1]

·
[
Φ+ τ1Ω+ τ2SΛ + τ3

(
1− Φ+ Ω+ Λ

Ψ

)]
, (50)

dTγ

dt
= tg1G1G2F1 −

tg2FSH

h3 + FSH
Tγ , (51)

dE2

dt
= e0 − δEE2 +

tg2FSH

h3 + FSH
Tγ · [Φ + ηΛS], (52)

dP4

dt
= −δPP4 +

pLH

LH + hp
· ΛS. (53)

G1 and G2 reflect the influence of insulin in enzyme production for the creation of T . They

are functions G1(I) and G2(I), but at basal insulin levels, G1 = G2 = 1 [14]. F1 and F2 are

dose response curves reflecting testosterone production via LH, given by F1 = LH2

κ1LH2+κ2LH+κ3

and F2 = LH
κ1LH2+κ2LH+κ3

[13, 14]. e0 and t0 reflect the initial E2 and T concentration in reserve

respectively, and δT , δE and δP are the clearance rates of T , E2 and P4 [14].
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The terms
tg2FSH
h3+FSHTγ in Equations (51) and (52) and [Φ + ηΛS] in Equation (52) represents

the influence of T on FSH dependent production of E2 in granulosa cells [14]. In Equation (50),

Φ + τ1Ω+ τ2SΛ +τ3
(
1− Φ+Ω+Λ

Ψ

)
reflects the ability of ovarian follicles to produce T [14]. Lastly,

pLH
LH+hp

· ΛS represents the LH dependent synthesis of P4 during the luteal phase. Figure 16 gives

a plot of the solutions to this system.
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Figure 16: Ovarian hormone dynamics over 400 days.

Recall that Equation (50) contains the term G1 = G1(I), which is a function of the body’s

equilibrium insulin level and provides a way to model the effects of insulin-mediated testosterone

levels [14]. G1(I) is equal to 1+α, where α is a parameter measuring the degree of insulin influence

on the ovulatory cycle [14]. α measures the degree of insulin influence in 6 discrete levels from 0

to 5 [14]. At normal basal insulin levels, which Brubaker et al. gives as 10 mU/L, α = 0, so G1 is

1 [2, 14]. However, as basal insulin levels increase, so does α and, by extension, G1 [14]. Figure 17

shows the effects of increasing α on the concentrations of T, LH, FSH, E2, and P4.
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Figure 17: Concentration of key reproductive hormones as the degree of influence of insulin on the

system, given by the parameter α, is increased from 0 to 5. As α increases, so does the concentration

of testosterone, and the hormone profile overall resembles the profile of an abnormal, anovulatory

menstrual cycle.

It is clear from Figure 17 that higher resting insulin levels increase ovulatory dysfunction. The

green curve in Figure 17 shows the hormone profile when α = 5, the highest possible level of insulin

influence. After the first month, the curve for LH shows not one monthly spike in LH levels, but

two points each month where LH increases rapidly. Given the importance of a single LH spike in

the process of ovulation, this is highly problematic [17]. Additionally, P4 levels become extremely

low compared to the normal profile, given in black; this is also problematic due to the importance

of maintaining higher P4 levels after ovulation to having a healthy menstrual cycle [17]. It is clear

from the model that a person with extremely high resting insulin levels is likely to have anovulation,

highly irregular periods, and elevated androgen levels. In other words, this person would have a

type of PCOS. Resting insulin levels, also known as fasting insulin levels, commonly increase as a

result of insulin resistance, providing a connection between insulin resistance and PCOS [21].

Rather than have α be given by discrete integer values, we can instead define it as a continuous

linear piecewise function by using the fact that 10 mU/L is considered the normal fasting insulin

concentration and any fasting concentration greater than 18 mU/L is considered extremely high
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[2, 21]:

α(I) =


0 if 9 ≤ I < 10

0.625I − 6.25 if 10 ≤ I ≤ 18

5 if 18 < I

. (54)

I represents the fasting insulin level in mU/L. We assume that α increases linearly as fasting

insulin levels in increase, starting at α = 0 when I = 10 and ending at α = 5 when I crosses the

threshold for extremely high fasting insulin levels [21]. It is important to note that the Graham-

Selgrade model does not account for potential effects of hypoinsulinemia, or extremely low fasting

insulin concentration, on ovulatory regulation. We can allow for slight fluctuations in an otherwise

normal fasting insulin concentration by setting the lower bound of I to be 9 mU/L; however, we

can’t make any assumptions beyond this.

By incorporating the effects of insulin on testosterone production in the ovulatory cycle, the

Graham-Selgrade model gives valuable mathematical insight into the link between insulin, testos-

terone and PCOS. This can provide insight into why diabetes medications such as semaglutide can

be effective in allievating PCOS symptoms. We can now begin construction of a combined model

that incorporates the effects of Ozempic.

4.4 Addition of Ozempic to Each Model

The Siewe-Friedman model, published in March of 2024, simulates both the stimulatory effects of

Ozempic on GLP-1 concentration and its inhibition of long term glucose accumulation [36]. The

original model provides differential equations measuring both the change in GLP-1 concentration

as amplified by Ozempic and the change in glucose concentration as diminished by Ozempic [36].

By modifying our three models according to the assumptions made by Siewe and Friedman, we

can create a comprehensive combined model that incorporates the impact of Ozempic both at the

cellular level through the expanded Takeda et al. model and at the macroscopic level through the

Brubaker et al. and Graham-Selgrade models.

To start, we assume that once Ozempic is injected into the body, the rate of change in its

concentration can be modeled as a single-compartment pharmacokinetic model. In other words, we

do not consider differences in how Ozempic interacts with the various tissues in the body; rather,

we assume the body acts as one unit that metabolizes Ozempic at a rate proportional to the present

concentration of of the drug [9]. This is primarily done for the purpose of model simplification,

but it is also due to the current dearth of information about the pharmacokinetics of Ozempic, as

the drug only came to market in 2019 [20]. Based on this assumption, the equation for the rate of

change of Ozempic concentration after the initial dosing is

d[D]

dt
= −µD[D], (55)

where [D] is the concentration of Ozempic and µD is its degradation rate [36].
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Then, we incorporate a term to represent the support Ozempic provides to GLP-1 circulating

throughout the body into our differential equations representing the change in free GLP-1 concen-

tration [36]. We start with the GLP-1 equation in the complete Takeda et al. model:

d[GLP1]

dt
= γL

(
1 +

[D]

KD + [D]

)
− µLR[GLP1][R]. (56)

[D]
KD+[D] is a Michaelis-Menten equation describing the reaction rate of Ozempic, where KD is the

concentration of Ozempic required to reach a half maximal reaction rate [36]. Therefore, in addition

to a constant rate of secretion after a meal, the concentration of GLP-1 also increases at a rate

proportional to the reaction rate of Ozempic.

Since Ozempic is a GLP-1 receptor agonist, it also binds to free GLP-1 receptors. To add

Ozempic to other equations in the GLP-1 receptor activation model, we first assume that GLP-1

and Ozempic are not in competition to bind to free receptors; instead, they act alongside each

other. Therefore, we are assuming the receptor binding affinity values for GLP-1 and Ozempic are

essentially the same. However, they do not combine to form a new compound, so the law of mass

action does not apply here; instead, these two compounds simply coexist. Therefore, rather than

incorporate the product of the concentrations of GLP-1 and Ozempic into the receptor activation

model, we use the sum of their concentrations to reflect the impact of their combined concentration

on the β− cell. Figure 18 provides an updated version of the reaction scheme used to initially

derive the completed Takeda et al. model that incorporates Ozempic into the system.

Figure 18: Reaction diagram showing GLP-1 receptor activation with the addition of Ozempic to

the system. The reactions in the red rectangle are still assumed to be at instantaneous equilibrium.

The instantaneous equilibrium assumption still applies to the updated system, due to the speed
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at which GLP-1 receptor agonists activate the Gs protein binding compared to the speed of other

β−cell processes [38]. Therefore, the equation for d[LR]
dt becomes

d[LR]

dt
=

1

Kd1

[
([D] + [GLP1])

d[R]

dt
+ [R]

(
d[D]

dt
+

d[GLP1]

dt

)]
. (57)

By repeating the derivation process used to obtain the complete GLP-1 receptor activation

model, we also obtain the new equation for d[R]
dt :

d[R]

dt
=

k2[RD1]− k1([Rt]− [R]− [RD1]− [RD2])−
(
d[D]
dt + d[GLP1]

dt

)(
[R]
Kd1

+ [G][R]
Kd1

(Kd2
+[LR])

)
1 + [D]+[GLP1]

Kd1
+ [G]([D]+[GLP1])

Kd1
(Kd2

+[LR])

−
(k5([Gt]− [G]− [Gβγ ])− k7[GαGDP ][Gβγ ])

[
[LR]

Kd2
+[LR]

]
1 + [D]+[GLP1]

Kd1
+ [G]([D]+[GLP1])

Kd1
(Kd2

+[LR])

. (58)

The product
[(

d[D]
dt + d[GLP1]

dt

)(
[R]
Kd1

+ [G][R]
Kd1

(Kd2
+[LR])

)]
in the numerator represents both the bind-

ing of GLP-1 and the GLP-1 receptor agonist to the GLP-1 receptor and the interactions between

the compounds activating the receptor and the G protein complex to create the LRG complex [38].

The terms [D]+[GLP1]
Kd1

and [G]([D]+[GLP1])
Kd1

(Kd2
+[LR]) in the denominator result from the combined concentra-

tions of GLP-1 and Ozempic and their interactions with Gs proteins during the receptor binding

process inhibiting the accumulation of free GLP-1 receptors. The equation for d[G]
dt remains the

same again, as all of the model changes are incorporated in the d[LR]
dt term in Equation (23).

Now that we have modeled the effects of Ozempic at the microscopic level, we can incorporate

the Siewe-Friedman model into the incretin effect model from Brubaker et al. [2, 36]. Since

the incretin effect model provides equations for both change in glucose and change in incretins,

including GLP-1, we modify both Equations (39) and (41) according to the guidelines set by Siewe

and Friedman:
dInc

dt
=

RaInc
V

(
1 +

[D]

KD + [D]

)
+ k5DuodG − k6Inc, (59)

dGluc

dt
=

RaGutG

V

 1

1 + [D]

K̂D

+
HepbalG

V
− k1Gluc1.3 − k2I + γ

dI

dt
. (60)

K̂D is the saturation of Ozempic that inhibits the accumulation of glucose; in this model, KD = K̂D,

and they both equal the initial dose of Ozempic [36]. The original Siewe-Friedman model multiplies

the terms 1+ [D]
KD+[D] and

1

1+
[D]

K̂D

by the appearance rates of of GLP-1 and glucose, respectively, after

a meal [36]. Because both GLP-1 and GIP are represented in dInc
dt , we will assume that Ozempic

effects them both equally for the purposes of this model. Therefore, when modifying the incretin

effect model, we multiply 1+ [D]
KD+[D] and

1

1+
[D]

K̂D

by RaInc
V and RaGutG

V respectively [2, 36]. Although

no new terms are added to dI
dt , it is more than reasonable to assume insulin levels will also change

with the addition of Ozempic due to the feedback loops between glucose, incretins, and insulin.
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We can use Equation (40), the equation for dI
dt , both in the original system and with the modified

equations to obtain the fasting insulin levels with Ozempic and without it. The fasting insulin levels

we get through performing these simulations then become inputs for Equation (54) to provide a

concrete way to measure the impact of Ozempic on insulin-mediated testosterone production and,

by extension, PCOS. With the creation of this combined model, we have forged a mathematical link

between semaglutide and PCOS. By providing an overview of the overall results of our simulations,

we gain new insights into this mathematical link.

5 Results

After expanding the Takeda et al. model to include d[R]
dt , d[G]

dt , and d[LR]
dt , we use MATLAB to solve

for [R], [LR], [LRG], [RD1] (the concentration of receptors in the first stage of desensitization),

[RD2], (the concentration of receptors in the second stage of desensitization), [G] (concentration of

full Gs protein trimer), [GαGTP ], [GαGDP ], [Gβγ ],[GLP1], and [cAMP ]. In the case of constant

GLP-1 concentration, we can also plot Equations (18) and (19) to visualize GLP-1 and LRG con-

centration. Additionally we can also plot Equations (20), (34), and (35) to find the solution curves

in the case of non-constant GLP-1 concentration without Ozempic. To see the model solutions

with the addition of Ozempic, we plot the solution the system with Equations (56)-(58) as well.

Figure 19 depicts the solution curves showing the concentration of each receptor type under those

3 conditions.

41 of 102



Figure 19: Concentrations of GLP-1 receptors in various stages under three conditions: constant

GLP-1 concentration (black line), non-constant GLP-1 concentration without Ozempic (solid line),

and non-constant GLP-1 concentration with Ozempic (dashed line). The initial conditions are

[R](0) = 0.003, [LR](0) = 0.00024, [RD1](0) = [RD2](0) = 0.0005, and [GLP1](0) = 0.00032.

Under constant GLP-1 concentration, the concentrations of each receptor type approach a

steady state due to the continuous activation of free receptors. If GLP-1 concentration decreases

without the support of Ozempic, the concentration of free receptors increases while the concentra-

tion of every other receptor type decreases over time. This is due to the overall decrease in GLP-1

concentration over time and the movement of receptors from the desensitized receptor populations

into the free receptors population after a certain time. However, when Ozempic is added to the

system, the concentrations of GLP-1 bound receptors LR and LRG both increase, reflecting the

nature of GLP-1 receptor agonists, and free receptors are at their lowest concentrations across all

three conditions due to increased receptor activation. The concentration of GLP-1 also decreases

at a slower rate with the support of Ozempic.

Figure 20 shows the concentrations of each Gs protein type under the three conditions of GLP-1

concentration. It is important to note that in each case, the overall concentration of G proteins

rapidly approaches the constant equilibrium of 2.83 µM, which is the total concentration of Gs

proteins in the β−cell given by Takeda et al. [38]. This supports the model assumption that the

total concentration of G proteins remains constant.

42 of 102



Figure 20: Concentrations of G proteins for the initial conditions [G](0) = 2.0, [GαGTP ](0) =

0.0002, [GαGDP ](0) = 1.4 and [Gβγ ](0) = 0.83 under the same three conditions as in Figure 19:

constant GLP-1 concentration (black line), non-constant GLP-1 concentration without Ozempic

(solid line), and non-constant GLP-1 concentration with Ozempic (dashed line).

Additionally, based on Figure 20, the concentrations of each type of G protein approach a steady

state due to the constant G protein concentration. However, when Ozempic is added to the system,

GαGTP concentration is greater. Because GαGTP activates the AC system in the β−cell, this

would indicate that more cAMP is accumulated with the use of GLP-1 receptor agonists. Figure

21 shows that this is indeed the case.
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Figure 21: Concentrations of cAMP under constant GLP-1 concentration (black line), non-constant

GLP-1 concentration without Ozempic (solid line), and non-constant GLP-1 concentration with

Ozempic (dashed line). The initial condition is [cAMP ](0) = 1.4.

cAMP accumulation is significantly higher in the β−cell of a person using Ozempic, and it

remains higher for the duration of the hour-long period that we are simulating to reflect the ap-

pearance of GLP-1 during the hour after eating a meal. It approaches a steady state under constant

GLP-1 concentration due to the continuous activation of GLP-1 receptors and the AC system. How-

ever, when GLP-1 concentration is decreasing, in both cases, the cAMP accumulation also decreases

after reaching a maximum concentration. It is important to note, though, that cAMP concentration

decreases at a slower rate with the use of Ozempic compared to the decrease in cAMP concentration

without Ozempic. This implies that insulin levels increase while using Ozempic.

By plotting the solution curves to the modified incretin effect model alongside the original

model that does not incorporate the effects of Ozempic, as in Figure 22, it is clear that insulin

levels do in fact increase slightly when a person uses Ozempic as simulated by the modified model.

Additionally, glucose levels decrease, reflecting the inhibition of glucose accumulation by Ozempic.
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Figure 22: Plasma concentration of incretin hormones, insulin and glucose under normal conditions

(k2 = 0.00204) without Ozempic (solid line) and with Ozempic (dashed line).

Recall that in the Brubaker et al. model, k2 represents insulin-mediated glucose uptake (IMGU)

[2]. From Figure 22, it is clear that with a normal k2 value fasting insulin levels are higher with

Ozempic than without it under our current model constraints. A lower k2 indicates that insulin

is having a reduced impact on the clearance of glucose from the bloodstream, which is required to

maintain healthy blood glucose levels. Therefore, k2 provides us which a concrete way to simulate

insulin resistance and measure the potential impact of Ozempic on a PCOS hormone profile. By

decreasing k2 to simulate insulin resistance, we can measure fasting insulin levels after an oral

glucose tolerance test (OGTT) under insulin resistance, both with and without the influence of

Ozempic. Then, we can use these fasting insulin levels as inputs into α(I) to measure the potential

effects of Ozempic on PCOS.

5.1 Experimentation

To start, the original Brubaker et al. paper provides a way to simulate an OGTT with a 50 gram

glucose load and a 100 gram glucose load [2]. To account for the worst case scenario, we assume

that each test is conducted with a 100 gram glucose load. We then gradually lower k2 and measure

insulin and glucose levels 1 hour, 2 hours, and one day after the OGTT, both in the original incretin

model and in the incretin model that incorporates the influence of Ozempic. The insulin levels after

one day are then assumed to be the fasting insulin levels. By taking these measurements, we can
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track not only fasting insulin levels, but also glucose regulation and overall insulin sensitivity both

with and without Ozempic, allowing us to form hypotheses about the impact of Ozempic on both

the incretin system and the menstrual cycle.

First, it is important to visualize how changes in IMGU impact insulin levels in an otherwise

normal incretin-insulin-glucose feedback loop without Ozempic. Based on Figure 23, which simu-

lates insulin levels for 13 hours after an OGTT under the assumption that there is no more glucose

introduced into the system, a decrease in k2 is associated with a rise in fasting insulin levels,

indicating impaired IMGU and insulin resistance.
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Figure 23: Insulin at basal, or fasting, levels without Ozempic for differing values of k2, which

measures the insulin-mediated glucose uptake (IMGU) in the Brubaker et al. model [2]. Note that

a decrease in IMGU results in a rise in fasting insulin levels, indicating that a person with low

IMGU has greater insulin resistance.

In order to better understand how Ozempic impacts insulin levels across various IMGU values,

we simulate both the original incretin effect model and the modified model over a 60 minute period

for 10 k2 values and find the insulin concentration at time t = 60 minutes. Figure 24 plots insulin

as a function of k2 concentration 1 hour after an OGTT, both with and without Ozempic.
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Figure 24: A graph showing the relationship between IMGU and insulin levels one hour taking an

oral glucose tolerance test.

The relationship between IMGU and insulin appears to be linear, and finding the linear re-

gression using R yields the equation I = 84.32 − 1588.62k2 for the linear model relating I to k2

without Ozempic and the equation I = 85.34− 1546.61k2 for the model with Ozempic. While the

implications of this are currently unclear, one interpretation of these linear models is that they re-

flect a overall change insulin sensitivity between the system with Ozempic and the system without

Ozempic. The shallower slope that occurs with Ozempic could indicate that initially after an oral

glucose tolerance test, insulin levels do not vary across different IMGU values as widely as they do

without Ozempic.

After finding the insulin concentration after 1 hour, it is also important to measure insulin

concentration after 2 hours to determine how the body reacts to the sudden influx of highly con-

centrated glucose over a longer time frame. Figure 25 plots IMGU as a function of insulin concen-

tration 2 hours after the OGTT is administered. Although insulin levels are still more elevated at

this time when using Ozempic compared to a system without Ozempic, the linear regression models

represented by each line also indicate a change in insulin sensitivity possibly mediated by Ozempic.

Now, the equation for the line without Ozempic is I = 53.45 − 1483.37k2, and the equation for

the line with Ozempic is I = 55.97 − 1472.62k2. It is again possible that the equations indicate

that insulin concentrations do not change as much across k2 values with Ozempic compared to the

changes in insulin concentration across k2 without Ozempic, even if the difference is small.
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Figure 25: IMGU and insulin levels 2 hours after an OGTT.

Figure 26 plots k2 as a function of insulin concentration measured one day after the adminis-

tration of the OGTT, assuming there was no other form of glucose delivered to the system. This is

unrealistic, but unfortunately the Brubaker et al. model does not allow for meal simulations, only

one-time OGTT administration. Therefore, this was the best way to approximate fasting insulin

levels within the confines of our current model.

Figure 26 indicates that fasting insulin levels are much higher under the influence of Ozempic.

Additionally, the relationship between I and k2 is still linear at this point, given by I = 11.69 −
837.46k2 without Ozempic and I = 16.15 − 994.14k2 with Ozempic. Now, the slope when I is

under influence of Ozempic is steeper than the slope of I without Ozempic. This could indicate an

greater increase in overall insulin sensitivity in the system that incorporates Ozempic, as even a

slight change in IMGU indicates a greater change in fasting insulin levels with Ozempic compared

to the change in fasting insulin across IMGU values without Ozempic. If this were the case, this

could explain why Ozempic can be a successful way to treat insulin resistant PCOS. Even if there is

a short term increase in fasting insulin after starting treatment with Ozempic, a long term increase

in insulin sensitivity indicates a long term decrease in insulin resistance, as the body no longer

needs to produce elevated levels of insulin to impact glucose regulation and other insulin mediated

processes. This is ultimately beneficial to those with insulin resistant PCOS, so even though initial

elevated fasting insulin may seem counter-intuitive, considering this within the context of potential

long term benefits clarifies some confusion.
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Figure 26: IMGU and insulin levels after 1 day of simulated meals. These are considered the fasting

insulin levels for other parts of the simulation.

5.1.1 Simulating PCOS treatment

To measure potential effects of Ozempic on PCOS under our current model, we can first assume that

this person has insulin resistant PCOS, as that is the primary population of PCOS patients taking

Ozempic to control their symptoms [37]. We then compare the fasting insulin levels both with and

without insulin for someone with the highest insulin resistance measured so far. This would be the

lowest k2 value, so we are looking that the fasting insulin concentrations when k2 = 0.000001. These

concentrations then become our inputs for Equation (54), or α(I), which is currently the primarily

way to measure the impact of fasting insulin on testosterone production and, by extension, the

menstrual cycle. We can then compare the hormone profile under the influence of fasting insulin

without Ozempic to the hormone profile under the influence of fasting insulin with Ozempic, as

shown in Figure 27. The simulated menstrual cycle become more dysfunctional as α increases, and

α increases as fasting insulin increases. Since fasting insulin has a much higher concentration with

Ozempic than without it under our current model, as shown in Figure 26, it would seem that taking

Ozempic would actually increase ovulatory dysfunction. Figure 27 appear to affirm this suspicion.
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Figure 27: A menstrual cycle simulated for 4 months in a person whose IMGU is represented by k2 =

0.000001. This person would be insulin resistant and have PCOS tendencies based on the Graham-

Selgrade model. The purple profile represents their hormone profile without using Ozempic, and

the pink profile represents their hormone profile while taking Ozmepic under the current model

constraints. The pink profile contains abnormal LH and P4 levels, indicating ovulatory dysfunction.

Why, then, would a person with insulin resistance and already elevated insulin levels with a

condition made worse by high insulin concentration take a drug that appears to elevate insulin and

perpetuate abnormalities in the menstrual cycle? These results initially appear very contradictory.

However, we are making key assumptions based on the incretin effect models that impact the

measurement of fasting insulin concentration and, by extension, the corresponding α value. Because

the incretin model only allows us to measure insulin with respect to one OGTT, we can only find

one fasting insulin value for a given k2 value. We then assume fasting insulin remains the same

for the 4 months the menstrual cycle is simulated. However, there are many other factors that

impact fasting insulin levels, such as additional meals, that are not necessarily taken into account

in the incretin effect model and may impact how fasting insulin changes over several months. For

the modified incretin model that incorporates Ozempic, fasting insulin is measured with respect to

one OGTT and the first dosage of Ozempic a person takes. However, Ozempic alters the incretin

system and repairs insulin resistance over a long term treatment regimen in ways that are not

initially obvious from simply looking at fasting insulin.

The primary potential impact of Ozempic on insulin resistance appears to be the long term
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increase of insulin sensitivity, which decreases insulin resistance. Analyzing the linear relationship

between k2 and insulin as measured with the incretin effect model provides potential evidence of this

hypothesis. Since OGTT is designed to measure a body’s glucose tolerance, it is also important to

measure glucose concentration from these simulations along with the insulin concentration. Figure

28 shows the glucose levels for various k2 values 1 hour after a simulated OGTT.

Figure 28: A graph showing the relationship between glucose levels and IMGU 1 hour after eating.

We can develop linear models for the relationship between glucose and k2 similar to the linear

models developed to measure the impact of k2 on insulin. Without Ozempic, G = 6.786−572.425k2,

where G is the glucose concentration. With Ozempic, G = 5.437− 601.684k2. Based on the linear

models, glucose levels appear to be more sensitive to changes in IMGU with the usage of Ozempic,

which could indicate increased insulin sensitivity with the usage of Ozempic.

To continue the measurement of the potential impact of Ozempic on glucose regulation, we next

find glucose levels two hours after the simulated OGTT. The linear relationship between k2 and

glucose concentration after 2 hours is depicted in Figure 29. It is clear from both Figures 28 and 29

that Ozempic lowers glucose levels, which could also lower insulin levels over time. By analyzing

the linear models as well, we can continue to see the impact of Ozempic on insulin sensitivity.
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Figure 29: IMGU and glucose levels 2 hours after eating.

The equation for the green line without Ozempic is G = 5.539− 552.62k2, and the equation for

the blue line with Ozempic is G = 4.705− 583.444k2. The continued sensitivity of glucose levels to

IMGU under the influence of Ozempic forms a possible link between Ozempic and increased insulin

sensitivity, which would benefit people with insulin resistant PCOS. It is also important to note the

link between decreased glucose levels and IMGU according to Figure 29: after two hours, a person

with a k2 value of 0.000001 taking Ozempic would have the same blood glucose concentration 2

hours after an OGTT as a person with a k2 value of 0.0015 who is not taking Ozempic. This

indicates a higher rate of insulin-mediated glucose clearance while taking Ozempic, demonstrating

an increased sensitivity to insulin.

One day after the OGTT, glucose concentration in an Ozempic user remains lower than glucose

concentration in a person not taking Ozempic, as shown in Figure 30. Glucose levels also remain

more sensitive to changes in insulin-mediated glucose clearance in Ozempic users. The equation

for the linear relationship without Ozempic is G = 4.671 − 331.586k2, and the linear model with

Ozempic is G = 4.555 − 398.722k2, once again indicating a potential link between Ozempic and

increased insulin sensitivity.
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Figure 30: IMGU and glucose levels after one day of simulated meals. These are the basal glucose

levels used in other parts of the simulation.

Another way to measure the possible effects of Ozempic on the incretin system is by plotting I

as a function of G. As shown in Figure 31, this function is linear both with and without Ozempic,

given by I = 2.5258G − 0.1089 without Ozempic and I = 2.493G + 4.796 with Ozempic. This

means that relative to the fasting insulin levels, it requires more insulin to regulate glucose after

one day with Ozempic than after one day without it, according to the model results. This is an

interesting result, as this corresponds with a decrease in insulin sensitivity and a potential increase

in insulin resistance, which would contradict other results obtained from these model simulations.

Therefore, the relationship between glucose levels and insulin levels after one day both with and

without Ozempic should be closely studied in future research.
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Figure 31: A graph showing the relationship between basal glucose levels and fasting insulin levels,

which are the glucose and insulin levels measured after one day.

We can also examine the impact of glucose concentration on α by plotting α as a function of G,

depicted in Figure 32. Through linear regression modeling, the equation α = 1.579G − 6.318 fits

the data without Ozempic, and α = 1.558G−3.253 fits the data with Ozempic. This indicates that

under our current models, glucose has less of an impact on the change in α relative to the initial

α value. This would imply that with Ozempic even higher levels of glucose would cause a smaller

change in α relative to the initial α, which could mean that even elevated glucose levels become

less disruptive of testosterone production over time. This would benefit people with PCOS, who

are theorized to have impaired IMGU and elevated glucose levels as a result.
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Figure 32: A graph showing the relationship between basal glucose levels and the degree of insulin

influence on the ovulatory cycle, given by α(I).

The relationship between k2 and α is the final clue into the link between Ozempic and PCOS

that we will examine in this paper. If we plot α as a function of k2, as shown in Figure 33, we see

that α is greater overall with Ozempic, but that sensitivity to changes in IMGU is also greater.

Without Ozempic, α = 1.056 − 523.413k2 but with Ozempic, α = 3.846 − 621.339k2. This means

that α is more sensitive to changes in k2 with Ozempic compared to without it, as a change in k2

results in a larger change in α with Ozempic compared to a change in α without Ozempic over the

same k2 interval. Therefore, as insulin resistance decreases, which is given by an increase in k2, the

degree of insulin influence on testosterone production decreases more rapidly wth Ozempic. This

implies that the system with Ozempic is more sensitive to changes in insulin-mediated processes,

which could be interpreted as an increase in insulin sensitivity.
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Figure 33: A graph showing the relationship between k2 and the degree of insulin influence on the

ovulatory cycle, given by α(I).

Overall, our combined model produces results that are both expected and surprising. The

increase in cAMP production when Ozempic is incorporated into the GLP-1 receptor model shown

in Figure 21 was a predictable outcome given the increased receptor activation and the subsequent

increase in AC system activation. The link between the resultant increase in insulin and its impact

on a dysfunctional hormone profile is less clear. At first, the results shown in Figure 27 appear to

indicate that using Ozempic increases hormone imbalances characteristic of PCOS, contradicting

anecdotal evidence of the treatment’s effectiveness. However, a closer examination of crucial model

parameters k2 and α, as well as some reflection on the current shortcomings of our model, allows

us to form a tenuous hypothesis about the link between Ozempic and PCOS: Ozempic potentially

increases insulin sensitivity in the long term, so despite an initial increase in fasting insulin under the

incretin model, it is possible that there will be a long term decrease in fasting insulin concentration

as insulin resistance decreases. This would reverse any ovulatory disruption caused by long term

elevated insulin levels, resulting in a reduction of PCOS symptoms. Further simulation would be

required to clarify other potential links, and further model adjustments would first have to be made.

6 Discussion

Although the model used in this paper provides a solid foundation to build on, it is highly simplified,

and there are changes that must be made in order to research the results presented here further.

First and foremost, there needs to be a way to simulate the long term effects of Ozempic on glucose

and insulin levels beyond a single oral glucose tolerance test. The simplest way to achieve this would
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be to provide a way to simulate multiple meals in the incretin effect model. This may require a

reworking of the entire incretin model by adding terms to incorporate food into Equations (39)-(41).

Until there is a way to simulate the impact of Ozempic over longer periods of time, no conclusions

can be drawn about its effectiveness as a PCOS treatment.

One other major improvement that needs to be made is the disentanglement of GLP-1 and GIP

in the equation for dInc
dt . The effects of both incretins are combined in that equation, and while

our model assumption that Ozempic supports both equally has not produced any wildly unrealistic

results, that assumption might not be true. It would be beneficial to tease out the two incretins into

two separate differential equations and then add the Ozempic support to the equation representing

GLP-1 at the macroscopic level.

Additionally, while the fasting insulin levels and basal glucose levels in Figures 26 and 30 vary

across different k2 values, the insulin and glucose concentrations measured for the lowest k2 value

without Ozempic are not considered highly “abnormal” and do not accurately reflect the insulin

and glucose levels one would expect to find in a system with such a low IMGU. In future research,

there should be a more realistic simulation of severe hyperinsulinemia and insulin resistance that

would likely be present in a person with hyperandrogenic PCOS. Brubaker, et al. mention that

hyperinsulinemia found in type 2 diabetes can be simulated by adjusting k1 in Equation (41), which

represents non-insulin mediated glucose uptake (NIMGU), in addition to k2 [2]. There should also

be a way to track the potential decrease of insulin resistance over long term usage of Ozempic, as

k2 is currently a constant term.

There are also several possible improvements to the GLP-1 receptor model. In the original

Takeda et al. paper, no initial conditions were given for the differential equations except for
d[cAMP ]

dt . Reasonable assumptions were made based on other model parameters; future research

efforts should attempt to derive the actual initial conditions used, if such a derivation is possible.

Concentrations of ATP and Ca2+ were also assumed to be constant in the original paper for the

purposes of model simplification. In reality, concentrations of ATP and Ca2+ in the β−cell oscillate

in response to other stimuli, such as glucose ingestion into the cell and changes in cell membrane

voltage [12, 31]. A 2003 model of Ca2+ flux in the β−cells by Fridlyand et al. accounts for these

oscilliations and provides differential equations describing the rate of change of ATP and Ca2+ that

can be incorporated into the GLP-1 receptor model [12]. Additionally, clarifying mathematically

how an increase in cAMP results in an increase in insulin would provide a concrete way to link

the incretin model to the GLP-1 receptor model. This could be done either by adding a term to

Equation 40 reflecting how cAMP amplifies insulin release at the macroscopic level or by modeling

the release of insulin at the β−cell level and incorporating this into the incretin model.

Any further research into the relationship between Ozempic and PCOS using this model would

require further analysis of k2 and α. It would also be worthwhile to determine what other parameters

in the combined model contribute most to changes in model behavior, as this could provide other

links between PCOS and Ozempic. This could be achieved through a bifurcation analysis and a
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sensitivity analysis. Additionally, since there is now a method to map both k2 and G to α, it would

also be possible to examine the impacts of both IMGU and glucose on insulin-mediated testosterone

production through this mathematical model.

Ultimately, the factors that entwine PCOS, insulin resistance and Ozempic weave a complex

story with many unknown players at work. It is imperative that research into PCOS, namely

into the biological processes underlying it, is prioritized alongside refinement of any mathematical

models simulating the condition. It is only through empathy and a desire to understand the

experiences of PCOS patients that meaningful progress is made towards finding the best ways to

improvement the quality of life of PCOS patients. Through this convergence of mathematics and

humanity, mathematics takes on its true form as a way for people to better understand the world

we inhabit.
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A Model Parameters

A.1 Model of GLP-1 Receptor Activation

Name Initial Condition Units Source

[R] 0.003 µM est. based on [Rt]

[LR] 0.00024 µM est. based on [Rt]

[G] 2 µM est. based on [Gt]

[RD1] 0.0005 µM est. based on [Rt]

[RD2] 0.0005 µM est. based on [Rt]

[GαGTP ] 0.0002 µM est.

[GαGDP ] 1.4 µM est.

[Gβγ ] 0.8299 µM est. based on [Gt]

[cAMP ] 1.4 µM [38]

[CaCaM ] 0 µM est. based on [11]

[GLP1] 0.32 nM est. based on [R] and [LR]

[D] 335 µM [28]

Table 1: Initial conditions for state variables.

59 of 102



Name Value Units Source

[Rt] 0.00434 µM [38]

Kd1 0.004 µM [38]

Kd2 0.004 µM [38]

[Gt] 2.83 µM [38]

k1 0.0025 s−1 [38]

k2 0.005833 s−1 [38]

k3 0.0002833 s−1 [38]

k4 0.00005 s−1 [38]

k5 16 s−1 [38]

k6 1 s−1 [38]

k7 1200 µM−1s−1 [32]

γL 5.729 ×10−19 µM s−1 [24, 36]

µLR 0.0115278 µM s−1 [24, 36]

µD 1.11×10−6 s−1 [5]

KD 335 µM [28]

K̂D 335 µM [28]

Table 2: Parameters for the G protein-coupled receptor subsystem (Equations (6)-(10) and (22)-

(24)), the GLP-1 concentration model (Equation (34)), and the Ozempic model (Equation (55)).
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Name Value Units Source

VmaxAC 0.6173 µM s−1 [38]

[ATP ] 3000 µM [38]

VmaxACG
17.38 µM s−1 [38]

fCdAC
0.6 # [38]

[Ca2+] 0.5 µM [38]

VmaxPDE 15 µM s−1 [38]

f 0.012 # [38]

KmL 0.4148 µM [38]

KmH 53.98 µM [38]

fCdPDE
0.2 µM [38]

k1f 2300 µM−1s−1 [11]

k1b 2400 s−1 [11]

k2f 2300 µM−1s−1 [11]

k2b 2400 s−1 [11]

k3f 160000 µM−1s−1 [11]

k3b 405000 s−1 [11]

k4f 160000 µM−1s−1 [11]

k4b 405000 s−1 [11]

[CaM ] 11.25 µM [11]

Table 3: Parameters for AC system submodel (Equations (25)-(33)) .

A.2 Model of the Incretin Effect

Name Initial Condition Units Source

Gluc 4 mmol L−1 [2]

Inc 200 ng L−1 [2]

I 10 mU L−1 [2]

HepbalGB 0.8549 mmol L−1 [2]

DuodG 0 mmol L−1 [2]

RaGutG 0 mmol L−1 [2]

t 0 min [2]

[D] 0.335 mM [28]

Table 4: Initial conditions for state variables and time-dependent parameters.
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Name Value Units Source

k1 0.00671 L0.3mmol−0.3min−1 [2]

k2 0.00204 mmol min−1mU−1 [2]

k3 0.0718 L min−1 [2]

k4 0.717 mmol min−1 [2]

k5 27.64 ng L−1mmol−1 [2]

k6 0.1 min−1 [2]

k7 0.125 mU min−1mmol−1.3L−0.3 [2]

k8 0.005 mU min−1ng−1 [2]

k9 0.1 min−1 [2]

M 0.02, 0.03 if G < 3 L2mU−1min−1 [2]

RaInc 280 ng min−1 [2]

V 14 L [2]

α 1.0 mmol2mU L−2min−1 [2]

β -0.758 mU L−1min−1 [2]

γ 0.06 if RaGutG > 0 mmol mU−1 [2]

µD 6.66×10−5 min−1 [5]

KD 0.335 mM [28]

K̂D 0.335 mM [28]

Table 5: Parameter values.
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A.3 Model of Ovulatory Regulation

Name Value Units Source

FSHρ 116.82 µg [14]

FSH 142.5 µg L−1 [14]

LHρ 250.35 µg [14]

LH 25.34 µg L−1 [14]

Φ 0.50185 µg [14]

Ω 9.7509 µg [14]

Λ 4.102 µg [14]

S 0.050498 # [14]

T 273.67 ng L−1 [14]

Tγ 0.003999 ng L−1µg−1 [14]

E2 56.387 ng L−1 [14]

P4 0.468 ng mL−1 [14]

Table 6: Initial conditions for state variables.
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Name Value Units Source

cF,E 0.0022729 L ng−1 [14]

cF,I 1.9488 # [14]

cF,P 60.428 L µg−1 [14]

cL,E 0.0010404 L ng−1 [14]

cL,P 0.0099415 L µg−1 [14]

cL,T 0.0095942 L ng−1 [14]

δF 8.21 day−1 [14]

δL 14 day−1 [14]

kF 2.5412 day−1 [14]

KF,I 107.01 µg [14]

KiL,P 0.34952 µg L−1 [14]

KL,T 420 ng L−1 [14]

KmL 183.56 µg L−1 [14]

kL 0.74567 day−1 [14]

n 8 # [14]

V 2.5 L [14]

v0L 1051.7 µg day−1 [14]

v1L 34838 µg day−1 [14]

vF 3236.6 µg day−1 [14]

Table 7: Parameters used in pituitary subsystem.
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Name Value Units Source

cΦ,F 0.01127 L µg−1 [14]

δS 0.74702 day−1 [14]

f0 0.0025112 µg day−1 [14]

f1 4.3764 day−1 [14]

f2 27.812 day−1 [14]

h1 590.32 µg L−1 [14]

h2 1815.2 µg L−1 [14]

hP 20.764 µg L−1 [14]

hS 12.329 µg L−1 [14]

l 0.49017 day−1 [14]

m 4 # [14]

ŝ 2.378 day−1 [14]

w 0.23173 day−1 [14]

Table 8: Parameters used in follicular dynamics subsystem.
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Name Value Units Source

cT,F2 123.8136 µg L−1 [14]

δE 1.1 day−1 [14]

δP 0.5 day−1 [14]

δT 5.5 day−1 [14]

e0 44.512 ng L−1day−1 [14]

η 1.1087 # [14]

h3 17.796 µg L−1 [14]

κ1 1.09 # [14]

κ2 22.28645 µg L−1 [14]

κ3 113.9188 µg2L−2 [14]

p 0.3734 L−1day−1 [14]

t0 741.68 ng L−1 [14]

t1 0.57088 ng L−1µg−1day−1 [14]

t2 1.3481 ng L−1µg−1day−1 [14]

τ1 5.3989 # [14]

τ2 0 # [14]

τ3 430.91 µg [14]

tg1 6.6548 ng L−1µg−1day−1 [14]

tg2 186.27 day−1 [14]

Ψ 2004.3 µg [14]

Table 9: Parameters used in ovarian hormone synthesis subsystem [14].
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B Results of Incretin Model Simulations

Without Ozempic With Ozempic

k2 Glucose (mmol/L) Insulin (mU/L) Glucose (mmol/L) Insulin (mU/L)

0.00204 5.61833 81.0846 4.20944 82.1989

0.002 5.64117 81.1462 4.23352 82.2582

0.0015 5.92692 81.9225 4.53418 83.0094

0.001 6.21296 82.7105 4.83494 83.7757

0.0005 6.49932 83.51 5.13581 84.5553

0.0001 6.72868 84.1574 5.37668 85.1882

0.00005 6.75734 84.239 5.40674 85.2676

0.00001 6.78031 84.3045 5.43082 85.3323

0.000005 6.78321 84.3125 5.43383 85.3403

0.000001 6.78548 84.3192 5.43623 85.3467

Table 10: Glucose and insulin concentrations, with and without Ozempic, at various k2 values one

hour after an OGTT is administered.

Without Ozempic With Ozempic

k2 Glucose (mmol/L) Insulin (mU/L) Glucose (mmol/L) Insulin (mU/L)

0.00204 4.41239 50.4366 3.5146 52.9768

0.002 4.43441 50.4936 3.53792 53.033

0.0015 4.71001 51.2144 3.82944 53.7445

0.001 4.98599 51.9488 4.121 54.4722

0.0005 5.26208 52.6962 4.41277 55.2157

0.0001 5.48408 53.304 4.64636 55.8215

0.00005 5.51187 53.3805 4.67557 55.8979

0.00001 5.53404 53.4418 4.69894 55.9591

0.000005 5.5368 53.4495 4.70187 55.9667

0.000001 5.53904 53.4557 4.7042 55.9729

Table 11: Glucose and insulin concentrations, with and without Ozempic, at various k2 values 2

hours after an OGTT is administered.
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Without Ozempic With Ozempic

k2 Glucose (mmol/L) Insulin (mU/L) Glucose (mmol/L) Insulin (mU/L)

0.00204 3.99955 9.99747 3.74527 14.1408

0.002 4.01186 10.0278 3.76048 14.1776

0.0015 4.16878 10.4169 3.95302 14.6467

0.001 4.33133 10.8246 4.14992 15.1335

0.0005 4.49961 11.2516 4.35121 15.6384

0.0001 4.63841 11.6073 4.5154 16.0555

0.00005 4.65602 11.6527 4.53612 16.1085

0.00001 4.67015 11.6891 4.55273 16.151

0.000005 4.67192 11.6937 4.55481 16.1563

0.000001 4.67333 11.6974 4.55648 16.1606

Table 12: Glucose and insulin concentrations, with and without Ozempic, at various k2 values 1

day after an OGTT is administered.
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C MATLAB Source Code

C.1 Model of GLP-1 Receptor Activation

C.1.1 Defining Parameters

ozempicpara.m

%Concentrations are in micromoles (mcM), and time is in seconds!

Rt = 0.00434; %mcM

KD1 = 0.004; %mcM

Gt = 2.83; %mcM

k5 = 16; %seconds^-1

k6 = 1; %s^-1

k7 = 1200;% 1/mcM*s, originally k7 = 1200000 1/mM*s

k1 = 0.0025; %s^-1

k2 = 0.005833; %s^-1

k3 = 0.0002833; %s^-1

k4 = 0.00005; %s^-1

VmaxAC = 0.6173; %mcM/s, originally VmaxAC = 0.0006173 mM/s

VmaxACG = 17.38; % mcM/s, originally 0.01738 mM/s

fCdAC = 0.6;

VmaxPDE = 15; %mcM/s originally 0.015 mM/s

fCdPDE = 0.2;

Kml = 0.4148; %mcM, 0.0004148 mM;

KmH = 53.98; %mcM; 0.05398 mM;

frac = 0.012;

KD2 = 0.372; %mM; 0.000372 mcM

ATP = 3000; %mcM, 3 mM

Ca2 = 0.5 ; %mcM, 500 nM

CaM = 11.25; %mcM

k1f = 2300; %1/mcM*s, 2.3 1/mcM*ms;

k2f = 2300; %1/mcM*s, 2.3 1/mcM*ms;

k3f = 160000; %1/mcM*s, 160 1/mcM*ms;

k4f = 160000; %1/mcM*s, 160 1/mcM*ms;

k1b = 2400; %1/s, 2.4 1/ms

k2b = 2400; %1/s, 2.4 1/ms

k3b = 405000; %1/s, 405 1/ms

k4b = 405000; %1/s, 405 1/ms

Kozempic = 335; %mcM

yL = 5.729e-19; %mcM/s
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uD = 1.11e-6; %1/s

uLB = 0.0115278; %mcM/s

C.1.2 Defining Differential Equations

beta.m

function ddt = beta(~,y)

run ozempicpara.m

ddt = zeros(10,1);

R = y(1);

LR = y(2);

G = y(3);

RD1 = y(4);

RD2=y(5);

GaGTP=y(6);

GaGDP = y(7);

Gbg = y(8);

cAMP = y(9);

CaCaM = y(10);

L = (KD1.*LR)./(R);

%%%%

Ca2CaM = (k2f./k2b).*Ca2.*CaCaM;

Ca3CaM = (k3f./k3b).*Ca2.*Ca2CaM;

Ca4CaM = (k4f./k4b).*Ca2.*Ca3CaM;

%%%%

a = (Ca3CaM+Ca4CaM)./(Ca3CaM+Ca4CaM+0.348);

x = (1-fCdAC)+(fCdAC.*a.*(75./(75+Ca2)));

V_AC = VmaxAC.*(0.4./(0.4+GaGTP)).*(ATP./(ATP+1030));

V_AC_G = VmaxACG.*(GaGTP./(0.4+GaGTP)).*(ATP./(ATP+315)).*x;

VAC_t = V_AC+V_AC_G;

b = (frac.*cAMP)./(cAMP+Kml);

c = ((1-frac).*cAMP)./(cAMP+KmH);

d = 1+(L./KD1)+((G.*L)./(KD1.*(KD2+LR)));

h = LR./(KD2+LR);

V_PDE = (VmaxPDE.*(b+c)).*((1-fCdPDE)+fCdPDE.*a);

%%%%

%R’

ddt(1)= (k2.*RD1-k1.*(Rt-R-RD1-RD2)-((k5.*(Gt-G-Gbg)-k7.*GaGDP.*Gbg).*h))./d;

%LR’
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ddt(2)= (L./KD1).*ddt(1);

%G’

ddt(3)=(k7.*GaGDP.*Gbg-k5.*(Gt-G-Gbg)-((G./KD2).*ddt(2)))./(1+LR./KD2);

%RD1’

ddt(4) = k1.*(Rt-R-RD1-RD2)-k2.*RD1-k3.*RD1+k4.*RD2;

%RD2’

ddt(5) = k3.*RD1 - k4.*RD2;

%GaGTP’

ddt(6) = k5.*(Gt-G-Gbg) - k6.*GaGTP;

%GaGDP’

ddt(7) = k6.*GaGTP - k7.*GaGDP.*Gbg;

%Gbg’

ddt(8) = k5.*(Gt-G-Gbg) - k7.*GaGDP.*Gbg;

%cAMP’

ddt(9) = VAC_t - 0.2.*V_PDE;

%CaCaM’

ddt(10)= (k1f.*Ca2.*CaM)-(k1b.*CaCaM);

end

ozempic.m

function ddt = ozempic(~,y)

run ozempicpara.m

ddt = zeros(11,1);

GLP1 = y(1);

R = y(2);

LR = y(3);

G = y(4);

RD1 = y(5);

RD2=y(6);

GaGTP=y(7);

GaGDP = y(8);

Gbg = y(9);

cAMP = y(10);

CaCaM = y(11);

%%%%

Ca2CaM = (k2f./k2b).*Ca2.*CaCaM;

Ca3CaM = (k3f./k3b).*Ca2.*Ca2CaM;

Ca4CaM = (k4f./k4b).*Ca2.*Ca3CaM;
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%%%%

a = (Ca3CaM+Ca4CaM)./(Ca3CaM+Ca4CaM+0.348);

x = (1-fCdAC)+(fCdAC.*a.*(75./(75+Ca2)));

V_AC = VmaxAC.*(0.4./(0.4+GaGTP)).*(ATP./(ATP+1030));

V_AC_G = VmaxACG.*(GaGTP./(0.4+GaGTP)).*(ATP./(ATP+315)).*x;

VAC_t = V_AC+V_AC_G;

b = (frac.*cAMP)./(cAMP+Kml);

c = ((1-frac).*cAMP)./(cAMP+KmH);

d = 1+(GLP1./KD1)+((G.*GLP1)./(KD1.*(KD2+LR)));

h = LR./(KD2+LR);

V_PDE = (VmaxPDE.*(b+c)).*((1-fCdPDE)+fCdPDE.*a);

k = ((G.*R)./(KD1.*(KD2+LR)));

%%%%

%GLP1’

ddt(1) = yL - uLB.*GLP1.*R;

%R’

ddt(2)= (k2.*RD1-k1.*(Rt-R-RD1-RD2)-((k5.*(Gt-G-Gbg)-k7.*GaGDP.*Gbg).*h)...

-(k.*ddt(1)))./d;

%LR’

ddt(3)= ((GLP1./KD1).*ddt(2)) + ((R./KD1).*ddt(1));

%G’

ddt(4)=(k7.*GaGDP.*Gbg-k5.*(Gt-G-Gbg)-((G./KD2).*ddt(3)))./(1+LR./KD2);

%RD1’

ddt(5) = k1.*(Rt-R-RD1-RD2)-k2.*RD1-k3.*RD1+k4.*RD2;

%RD2’

ddt(6) = k3.*RD1 - k4.*RD2;

%GaGTP’

ddt(7) = k5.*(Gt-G-Gbg) - k6.*GaGTP;

%GaGDP’

ddt(8) = k6.*GaGTP - k7.*GaGDP.*Gbg;

%Gbg’

ddt(9) = k5.*(Gt-G-Gbg) - k7.*GaGDP.*Gbg;

%cAMP’

ddt(10) = VAC_t - 0.2.*V_PDE;

%CaCaM’

ddt(11)= (k1f.*Ca2.*CaM)-(k1b.*CaCaM);

end
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ozempic2.m

function ddt = ozempic2(~,y)

run ozempicpara.m

ddt = zeros(12,1);

D = y(1); %D is the diff. eq. for Ozempic

GLP1 = y(2);

R = y(3);

LR = y(4);

G = y(5);

RD1 = y(6);

RD2=y(7);

GaGTP=y(8);

GaGDP = y(9);

Gbg = y(10);

cAMP = y(11);

CaCaM = y(12);

%%%%

Ca2CaM = (k2f./k2b).*Ca2.*CaCaM;

Ca3CaM = (k3f./k3b).*Ca2.*Ca2CaM;

Ca4CaM = (k4f./k4b).*Ca2.*Ca3CaM;

%%%%

a = (Ca3CaM+Ca4CaM)./(Ca3CaM+Ca4CaM+0.348);

x = (1-fCdAC)+(fCdAC.*a.*(75./(75+Ca2)));

V_AC = VmaxAC.*(0.4./(0.4+GaGTP)).*(ATP./(ATP+1030));

V_AC_G = VmaxACG.*(GaGTP./(0.4+GaGTP)).*(ATP./(ATP+315)).*x;

VAC_t = V_AC+V_AC_G;

b = (frac.*cAMP)./(cAMP+Kml);

c = ((1-frac).*cAMP)./(cAMP+KmH);

d = 1+((D+GLP1)./KD1)+((G.*(GLP1+D))./(KD1.*(KD2+LR)));

h = LR./(KD2+LR);

V_PDE = (VmaxPDE.*(b+c)).*((1-fCdPDE)+fCdPDE.*a);

k = (R./KD1)+((G.*R)./(KD1.*(KD2+LR)));

%%%%

%D’

ddt(1)= -uD.*D;

%GLP1’

ddt(2) = yL.*(1+(D./(Kozempic + D))) - uLB.*GLP1.*R;

%R’
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ddt(3)= (k2.*RD1-k1.*(Rt-R-RD1-RD2)-((k5.*(Gt-G-Gbg)-k7.*GaGDP.*Gbg).*h)...

-(k.*(ddt(2)+ddt(1))))./d;

%LR’

ddt(4)= (1/KD1).*(((GLP1+D).*ddt(3)) + (R.*(ddt(2)+ddt(1))));

%G’

ddt(5)=(k7.*GaGDP.*Gbg-k5.*(Gt-G-Gbg)-((G./KD2).*ddt(4)))./(1+LR./KD2);

%RD1’

ddt(6) = k1.*(Rt-R-RD1-RD2)-k2.*RD1-k3.*RD1+k4.*RD2;

%RD2’

ddt(7) = k3.*RD1 - k4.*RD2;

%GaGTP’

ddt(8) = k5.*(Gt-G-Gbg) - k6.*GaGTP;

%GaGDP’

ddt(9) = k6.*GaGTP - k7.*GaGDP.*Gbg;

%Gbg’

ddt(10) = k5.*(Gt-G-Gbg) - k7.*GaGDP.*Gbg;

%cAMP’

ddt(11) = VAC_t - 0.2.*V_PDE;

%CaCaM’

ddt(12)= (k1f.*Ca2.*CaM)-(k1b.*CaCaM);

end

C.1.3 Plotting Figures 19-21

run ozempicpara.m

sol3 = ode23s(@beta, [0 3600], [0.003 0.00024 2.0 0.0005 0.0005 0.0002 1.4...

0.8299 1.4 0]); %constant GLP-1 concentration

%Initial conditions to get a GLP-1 concentration of 0.32 nM

C = sol3.y;

for n=1:9

min(C(n,:))

end %to make sure none of the differential equations have negative outputs

GLP_1 = (KD1.*C(2,:))./(C(1,:));

LRG_1 = (C(2,:).*C(3,:))./KD2; %LRG = (LR*G)/Kd2

%~~~~
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solution2 = ode23s(@ozempic, [0 3600],...

[3.2e-4 0.003 0.00024 2.0 0.0005 0.0005 0.0002 1.4 0.83 1.4 0]);

%non-constant GLP-1 concentration, no Ozempic

X = solution2.y;

for n=1:11

min(X(n,:))

end

LRG_2 = (X(3,:).*X(4,:))./KD2;

%~~~~

solution = ode23s(@ozempic2, [0 3600],...

[335 3.2e-4 0.003 0.00024 2.0 0.0005 0.0005 0.0002 1.4 0.83 1.4 0]);

%Non-constant GLP-1 concentration with Ozempic

%Ozempic dosage is always 335 mcM (1.34 mg/mL)

W = solution.y;

for n=1:12

min(W(n,:))

end

LRG_3 = (W(4,:).*W(5,:))./KD2;

%%%

figure(1); %GLP-1 receptor solution curves for all 3 conditions

subplot(6,1,1)

plot(sol3.x,GLP_1,Color = ’#000000’)

hold on

plot(solution2.x,X(1,:),Color = ’#F00396’)

hold on

plot(solution.x,W(2,:),Color = ’#F00396’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’GLP-1 (M)’)

xlim([0 3600])

ylim([2.7e-4 3.3e-4])

subplot(6,1,2)

plot(sol3.x,C(1,:),Color=’#000000’)

hold on

plot(solution2.x,X(2,:),Color=’#FD1A1A’)

hold on
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plot(solution.x,W(3,:),Color=’#FD1A1A’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’Free Receptors (M)’)

xlim([0 3600])

ylim([2.5e-3 4e-3])

subplot(6,1,3)

plot(sol3.x,C(2,:),Color=’#000000’)

hold on

plot(solution2.x,X(3,:),Color=’#F99215’)

hold on

plot(solution.x,W(4,:),Color=’#F99215’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’LR (M)’)

xlim([0 3600])

ylim([2.5e-4 4e-4])

subplot(6,1,4)

plot(sol3.x,C(4,:),Color=’#000000’)

hold on

plot(solution2.x,X(5,:),Color=’#1AAA01’)

hold on

plot(solution.x,W(6,:),Color=’#1AAA01’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’RD1 (M)’)

xlim([0 3600])

subplot(6,1,5);

plot(sol3.x,C(5,:),Color=’#000000’)

hold on

plot(solution2.x,X(6,:),Color=’#3725F0’)

hold on

plot(solution.x,W(7,:),Color=’#3725F0’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’RD2 (M)’)

xlim([0 3600])

subplot(6,1,6)
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plot(sol3.x,LRG_1,Color=’#000000’)

hold on

plot(solution2.x,LRG_2,Color=’#9A00C2’)

hold on

plot(solution.x,LRG_3,Color=’#9A00C2’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’LRG (M)’)

xlim([0 3600])

%%%

figure(2); %G protein solution curves for all 3 conditions

subplot(5,1,1)

plot(sol3.x,GLP_1,Color = ’#000000’)

hold on

plot(solution2.x,X(1,:),Color = ’#F00396’)

hold on

plot(solution.x,W(2,:),Color = ’#F00396’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’GLP-1 (M)’)

xlim([0 3600])

ylim([2.7e-4 3.3e-4])

subplot(5,1,2)

plot(sol3.x,C(3,:),Color=’#000000’)

hold on

plot(solution2.x,X(4,:),Color=’#FD1A1A’)

hold on

plot(solution.x,W(5,:),Color=’#FD1A1A’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’Gs Protein Trimers (M)’)

xlim([0 3600])

subplot(5,1,3)

plot(sol3.x,C(6,:),Color=’#000000’)

hold on

plot(solution2.x,X(7,:),Color=’#F99215’)

hold on

plot(solution.x,W(8,:),Color=’#F99215’,LineStyle=’--’)

xlabel(’Time (seconds)’)

77 of 102



ylabel(’GGTP (M)’)

xlim([0 3600])

ylim([0 0.03])

subplot(5,1,4)

semilogy(sol3.x,C(7,:),Color=’#000000’)

hold on

semilogy(solution2.x,X(8,:),Color=’#1AAA01’)

hold on

semilogy(solution.x,W(9,:),Color=’#1AAA01’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’GGDP (M)’)

xlim([0 3600])

ylim([0.4 1.3])

subplot(5,1,5)

semilogy(sol3.x,C(8,:),Color=’#000000’)

hold on

semilogy(solution2.x,X(9,:),Color=’#3725F0’)

hold on

semilogy(solution.x,W(10,:),Color=’#3725F0’,LineStyle = ’--’)

xlabel(’Time (seconds)’)

ylabel(’G (M)’)

xlim([0 3600])

ylim([1e-6 1])

%%%

figure(3); %cAMP in all three conditions

figure(3)

subplot(2,1,1)

plot(sol3.x,GLP_1,Color = ’#000000’)

hold on

plot(solution2.x,X(1,:),Color = ’#F00396’)

hold on

plot(solution.x,W(2,:),Color = ’#F00396’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’GLP-1 (M)’)

xlim([0 3600])

ylim([2.7e-4 3.3e-4])
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subplot(2,1,2)

plot(sol3.x,C(9,:),Color=’#000000’)

hold on

plot(solution2.x,X(10,:),Color=’#D837FF’)

hold on

plot(solution.x,W(11,:),Color=’#D837FF’,LineStyle=’--’)

xlabel(’Time (seconds)’)

ylabel(’cAMP (M)’)

xlim([0 3600])

C.2 Model of the Incretin Effect

C.2.1 Defining Parameters

k1 = 0.00671;

k3 = 0.0718;

k4 = 0.717;

k5 = 27.64;

k6 = 0.1;

k7 = 0.125;

k8 = 0.005;

k9 = 0.1;

RaInc = 280;

V = 14;

a = 1;

B = -0.758;

Kozempic = 0.335; %mM, for model with addition of Ozempic

uD = 6.66e-5;%min^-1

C.2.2 Defining Differential Equations

incretin.m

function ddt = incretin(t,y)

run incretinpara.m

ddt=zeros(3,1);

Inc = y(1);

I=y(2);

G=y(3);
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k2 = 0.00204;

if G<3

M=0.03;

else

M=0.02;

end

Hepbalg = 0.8549 + (M.*(4-G).*I);

Duodg = (6.349-0.0353.*t).*(t>=5 & t<=179.9);

RaGutg = (0.36.*(t-5).^1.05.*exp(-0.029.*(t-5))).*(t>=5);

if t>=5

g = 0.06;

else

g = 0;

end

%Inc’(t)

ddt(1) = RaInc./V + k5.*Duodg - k6.*Inc;

%I’(t)

ddt(2) = k7.*(G.^(1.3)) + k8.*Inc-k9.*I+B;

%G’(t)

ddt(3) = (RaGutg./V)+(Hepbalg./V) - k1.*(G.^(1.3))-k2.*I+g.*ddt(2);

end

glp1ra.m

function ddt = glp1ra(t,y)

run incretinpara.m

ddt=zeros(4,1);

D = y(1);

Inc = y(2);

I=y(3);

G=y(4);

k2 = 0.00204;

if G<3

M = 0.03;

else

M = 0.02;

end

Hepbalg = 0.8549 + (M.*(4-G).*I);%+((1./(G.*I))-(1./(40)));

Duodg = (6.349-0.0353.*t).*(t>=5 & t<=179.9);
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RaGutg = (0.36.*(t-5).^1.05.*exp(-0.029.*(t-5))).*(t>=5);

if t>=5

g = 0.06;

else

g = 0;

end

%D’(t)

ddt(1) = -uD.*D;

%Inc’(t)

ddt(2) = ((RaInc./V).*(1+(D./(Kozempic + D)))) + k5.*Duodg - k6.*Inc;

%I’(t)

ddt(3) = k7.*(G.^(1.3)) + k8.*Inc-k9.*I+B;

%G’(t)

ddt(4) = (Hepbalg./V)+((RaGutg./V).*(1./(1+(D./Kozempic)))) - k1.*(G.^(1.3))...

-k2.*I+g.*ddt(3);

end

C.2.3 Plotting Figures 12 and 13

run incretinpara.m

sol2 = ode23s(@incretin,[0 300],[200 10 4]);

Z = sol2.y;

%plot of Inc(t)

figure(1);

subplot(3,1,1)

plot(sol2.x,Z(1,:),Color="#F00396")

xlabel(’Time (minutes)’)

ylabel(’Incretin Conc. (ng/L)’)

ylim([0 1700])

%Plot of I(t)

subplot(3,1,2)

plot(sol2.x,Z(2,:),Color=’#00AAE8’)

xlabel(’Time (minutes)’)

ylabel(’Insulin Conc. (mU/L)’)

%Plot of G(t)

subplot(3,1,3)

plot(sol2.x,Z(3,:),Color=’#8040E6’)

xlabel(’Time (minutes)’)

ylabel(’Glucose Conc. (mmol/L)’)
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To plot Figure 13, I set Duodg = 0 in the function incretin.m.

C.2.4 Plotting Figure 22

run incretinpara.m

sol6 = ode23s(@incretin,[0 300],[200 10 4]);

Z = sol6.y; %without Ozempic

sol7 = ode23s(@glp1ra,[0 300],[0.335 200 10 4]);

A = sol7.y; %with Ozempic

%plot of Inc(t)

figure(1);

subplot(3,1,1)

plot(sol6.x,Z(1,:),Color="#F00396")

hold on

plot(sol7.x,A(2,:),Color="#F00396",LineStyle=’--’)

xlabel(’Time (minutes)’)

ylabel(’Incretin Conc. (ng/L)’)

ylim([0 2000])

%Plot of I(t)

subplot(3,1,2)

plot(sol6.x,Z(2,:),Color=’#00AAE8’)

hold on

plot(sol7.x,A(3,:),Color=’#00AAE8’,LineStyle=’--’)

xlabel(’Time (minutes)’)

ylabel(’Insulin Conc. (mU/L)’)

%Plot of G(t)

subplot(3,1,3)

plot(sol6.x,Z(3,:),Color=’#8040E6’)

hold on

plot(sol7.x,A(4,:),Color=’#8040E6’,LineStyle=’--’)

xlabel(’Time (minutes)’)

ylabel(’Glucose Conc. (mmol/L)’)

ylim([2 9])

C.2.5 Plotting Figure 23

run incretinpara.m
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so1 = ode23s(@incretin,[0 900],[200 10 4]);

F = so1.y;

so2 = ode23s(@incretink20001,[0 900],[200 10 4]);

G = so2.y;

so4 = ode23s(@incretink20000001,[0 900],[200 10 4]);

J = so4.y;

%Plot of I(t)

figure(1);

plot(so1.x,F(2,:),Color=’#1797DB’)

hold on

plot(so2.x,G(2,:),Color=’#29A600’)

hold on

plot(so4.x,J(2,:),Color=’#E80083’)

xlabel(’Time (minutes)’)

ylabel(’Plasma Insulin Conc. (mU/L)’)

To get @incretink20001 and @incretink20000001, I set k2 = 0.001 and k2 = 0.000001 respec-

tively in incretin.m.

C.3 Model of Ovulatory Regulation

C.3.1 Defining Parameters

testopara.m

cFE = 0.0022729;

cFI = 1.9488;

cFP = 60.428;

cLE = 0.0010404;

cLP = 0.0099415;

cLT = 0.0095942;

dF = 8.21;

dL = 14;

kF = 2.5412;

KFI = 107.01;

KiLP = 0.34952;

KLT = 420;

KmL = 183.56;

kL = 0.74567;

n = 8;

V = 2.5;
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v0L = 1051.7;

v1L = 34838;

vF = 3236.6;

cPF = 0.01127;

dS = 0.74702;

f0 = 0.0025112;

f1 = 4.3764;

f2 = 27.812;

h1 = 590.32;

h2 = 1815.3;

hP = 20.764;

hs = 12.329;

l = 0.49017;

m = 4;

s = 2.378;

w = 0.23173;

cTF2 = 123.8136;

dE = 1.1;

dP = 0.5;

dT = 5.5;

e0 = 44.512;

N = 1.1087;

h3 = 17.796;

K1 = 1.09;

K2 = 22.28645;

K3 = 113.9188;

p = 0.3734;

T0 = 273.67;

t0 = 741.68;

t1 = 0.57088;

t2 = 1.3481;

T1 = 5.3989;

%T2 = 0;

T3 = 430.91;

tg1 = 6.6548;

tg2 = 186.27;

Psi = 2004.3;

cPT = 0.19878;
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C.3.2 Defining Differential Equations

function ddt = testo(~,y)

run testopara.m

ddt = zeros(12,1);

FSHp = y(1);

FSH = y(2);

LHp = y(3);

LH = y(4);

Phi = y(5);

Omega = y(6);

Lambda = y(7);

S = y(8);

T = y(9);

Tgamma = y(10);

E2 = y(11);

P4 = y(12);

a = 0;

G1 = 1+a;

q = ((S.*Lambda)./(KFI+S.*Lambda));

b = (((1+(cFP.*P4))./(1+(cFE.*E2.^2))));

c = (T./(KLT+T));

d = ((E2.^8)./((KmL.^8)+(E2.^8)));

e = (P4./(KiLP.*(1+(cLT.*T))));

f = (((1+(cLP.*P4))./(1+(cLE.*E2))));

g = (h1./(1+((cPT.*T)./T0)));

h = (h2./(1+(cPF.*FSH)));

j = ((Phi+Omega+Lambda)./Psi);

k = (Phi+(T1.*Omega)+(T3.*(1-j)));

F1 = (LH.^2./(K1.*LH.^2+K2.*LH+K3));

F2 = (LH./(K1.*LH.^2+K2.*LH+K3));

pp = ((t1.*G1.*(F1+(cTF2.*F2)))+(t2.*G1.*F1));

r = (((tg2.*FSH)./(h3+FSH)).*Tgamma);

u = ((p.*LH)./(LH+hP));

%FSHp’

ddt(1) = (vF./(1+cFI.*q))-(kF.*b.*FSHp);

%FSH’

ddt(2) = ((1/V).*kF.*b.*FSHp)-(dF.*FSH);

%LHp’
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ddt(3) = (((v0L.*c)+(v1L.*d)).*(1./(1+e)))-(kL.*f.*LHp);

%LH’

ddt(4) = ((1/V).*kL.*f.*LHp)-(dL.*LH);

%Phi’

ddt(5) = ((f0.*T)./T0)+(Phi.*(((f1.*FSH.^2)./(g.^2+FSH.^2))-...

((f2.*LH.^2)./(h.^2+LH.^2))));

%Omega’

ddt(6) = (((f2.*LH.^2)./(h.^2+LH.^2)).*Phi)-(w.*S.*Omega);

%Lambda’

ddt(7) = (w.*S.*Omega) - (l.*(1-S).*Lambda);

%S’

ddt(8) = (((s.*LH.^4)./(hs.^4+LH.^4)).*(1-S))-(dS.*S);

%T’

ddt(9) = t0 - (dT.*T) + (pp.*k);

%Tgamma’

ddt(10) = (tg1.*G1.*F1) - r;

%E2’

ddt(11) = e0-(dE.*E2)+(r.*(Phi+(N.*Lambda.*S)));

%P4’

ddt(12) = -(dP.*P4) + (Lambda.*S.*u);

end

C.3.3 Plotting Figures 14-16

run testopara.m

sol = ode23s(@testo, [0 400], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z=sol.y;

figure(1);

%FSHp

subplot(4,1,1)

plot(sol.x,Z(1,:),Color=’#FFC73D’)

xlabel(’Time (days)’)

ylabel(’Reserve FSH (g/L)’)

%FSH

subplot(4,1,2)

plot(sol.x,Z(2,:),Color=’#979797’)

xlabel(’Time (days)’)

ylabel(’FSH (g/L)’)
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%LHp

subplot(4,1,3)

plot(sol.x,Z(3,:),Color=’#8102CC’)

xlabel(’Time (days)’)

ylabel(’Reserve LH (g/L)’)

%LH

subplot(4,1,4)

plot(sol.x,Z(4,:),Color=’#000000’)

xlabel(’Time (days)’)

ylabel(’LH (g/L)’)

%~

figure(2);

%Phi

subplot(2,1,1)

plot(sol.x,Z(5,:),Color=’#FFC73D’)

%Omega

hold on

plot(sol.x,Z(6,:),Color=’#979797’)

%Lambda

hold on

plot(sol.x,Z(7,:),Color=’#8102CC’)

xlabel(’Time (days)’)

ylabel(’Ovarian Mass (g)’)

%S

subplot(2,1,2)

plot(sol.x,Z(8,:),Color=’#000000’)

xlabel(’Time (days)’)

ylabel(’LH Support’)

%~

figure(3);

%T

subplot(4,1,1)

plot(sol.x,Z(9,:),Color=’#FFC73D’)

xlabel(’Time (days)’)

ylabel(’T (ng/L)’)

%Tgamma

subplot(4,1,2)

plot(sol.x,Z(10,:),Color=’#979797’)
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xlabel(’Time (days)’)

ylabel(’T (ng/L)’)

%E2

subplot(4,1,3)

plot(sol.x,Z(11,:),Color=’#8102CC’)

xlabel(’Time (days)’)

ylabel(’E_2 (ng/L)’)

%P4

subplot(4,1,4)

plot(sol.x,Z(12,:),Color=’#000000’)

xlabel(’Time (days)’)

ylabel(’P_4 (ng/L)’)

C.3.4 Plotting Figure 17

sol0 = ode23s(@testo, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z0 = sol0.y;

sol1 = ode23s(@testo1, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z1 = sol1.y;

sol2 = ode23s(@testo2, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z2 = sol2.y;

sol3 = ode23s(@testo3, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z3 = sol3.y;

sol4 = ode23s(@testo4, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z4 = sol4.y;

sol5 = ode23s(@testo5, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

Z5 = sol5.y;
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TMat = [Z0(9,1:500); Z1(9,1:500); Z2(9,1:500); Z3(9,1:500); Z4(9,1:500);...

Z5(9,1:500)];

LHMat = [Z0(4,1:500); Z1(4,1:500); Z2(4,1:500); Z3(4,1:500);...

Z4(4,1:500); Z5(4,1:500)];

FSHMat = [Z0(2,1:500); Z1(2,1:500); Z2(2,1:500); Z3(2,1:500);...

Z4(2,1:500); Z5(2,1:500)];

E2Mat = [Z0(11,1:500); Z1(11,1:500); Z2(11,1:500); Z3(11,1:500);...

Z4(11,1:500); Z5(11,1:500)];

P4Mat = [Z0(12,1:500); Z1(12,1:500); Z2(12,1:500); Z3(12,1:500);...

Z4(12,1:500); Z5(12,1:500)];

figure(1)

subplot(2,3,1)

plot(1:500,TMat)

title(’T (ng/L)’)

subplot(2,3,2)

plot(1:500,LHMat)

title(’LH (g/L)’)

subplot(2,3,3)

plot(1:500,FSHMat)

title(’FSH (g/L)’)

subplot(2,3,4)

plot(1:500,E2Mat)

title(’E2 (ng/L)’)

subplot(2,3,5)

plot(1:500,P4Mat)

title(’P4 (ng/mL)’)

To obtain the functions testo1.m, testo2.m, testo3.m, testo4.m, and testo5.m, I set a equal to

1, 2, 3, 4 and 5 respectively in testo.m.

C.3.5 Plotting Figure 27

testoi116974.m

function ddt = testoi116974(~,y)
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run testopara.m

ddt = zeros(12,1);

FSHp = y(1);

FSH = y(2);

LHp = y(3);

LH = y(4);

Phi = y(5);

Omega = y(6);

Lambda = y(7);

S = y(8);

T = y(9);

Tgamma = y(10);

E2 = y(11);

P4 = y(12);

I = 11.6974;

a = 0.625.*I-6.25;

G1 = 1+a;

q = ((S.*Lambda)./(KFI+S.*Lambda));

b = (((1+(cFP.*P4))./(1+(cFE.*E2.^2))));

c = (T./(KLT+T));

d = ((E2.^8)./((KmL.^8)+(E2.^8)));

e = (P4./(KiLP.*(1+(cLT.*T))));

f = (((1+(cLP.*P4))./(1+(cLE.*E2))));

g = (h1./(1+((cPT.*T)./T0)));

h = (h2./(1+(cPF.*FSH)));

j = ((Phi+Omega+Lambda)./Psi);

k = (Phi+(T1.*Omega)+(T3.*(1-j)));

F1 = (LH.^2./(K1.*LH.^2+K2.*LH+K3));

F2 = (LH./(K1.*LH.^2+K2.*LH+K3));

pp = ((t1.*G1.*(F1+(cTF2.*F2)))+(t2.*G1.*F1));

r = (((tg2.*FSH)./(h3+FSH)).*Tgamma);

u = ((p.*LH)./(LH+hP));

%FSHp’

ddt(1) = (vF./(1+cFI.*q))-(kF.*b.*FSHp);

%FSH’

ddt(2) = ((1/V).*kF.*b.*FSHp)-(dF.*FSH);

%LHp’

ddt(3) = (((v0L.*c)+(v1L.*d)).*(1./(1+e)))-(kL.*f.*LHp);

90 of 102



%LH’

ddt(4) = ((1/V).*kL.*f.*LHp)-(dL.*LH);

%Phi’

ddt(5) = ((f0.*T)./T0)+(Phi.*(((f1.*FSH.^2)./(g.^2+FSH.^2))-...

((f2.*LH.^2)./(h.^2+LH.^2))));

%Omega’

ddt(6) = (((f2.*LH.^2)./(h.^2+LH.^2)).*Phi)-(w.*S.*Omega);

%Lambda’

ddt(7) = (w.*S.*Omega) - (l.*(1-S).*Lambda);

%S’

ddt(8) = (((s.*LH.^4)./(hs.^4+LH.^4)).*(1-S))-(dS.*S);

%T’

ddt(9) = t0 - (dT.*T) + (pp.*k);

%Tgamma’

ddt(10) = (tg1.*G1.*F1) - r;

%E2’

ddt(11) = e0-(dE.*E2)+(r.*(Phi+(N.*Lambda.*S)));

%P4’

ddt(12) = -(dP.*P4) + (Lambda.*S.*u);

end

testoi161606.m

function ddt = testoi161606(~,y)

run testopara.m

ddt = zeros(12,1);

FSHp = y(1);

FSH = y(2);

LHp = y(3);

LH = y(4);

Phi = y(5);

Omega = y(6);

Lambda = y(7);

S = y(8);

T = y(9);

Tgamma = y(10);

E2 = y(11);

P4 = y(12);

I = 16.1606;
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a = 0.625.*I-6.25;

G1 = 1+a;

q = ((S.*Lambda)./(KFI+S.*Lambda));

b = (((1+(cFP.*P4))./(1+(cFE.*E2.^2))));

c = (T./(KLT+T));

d = ((E2.^8)./((KmL.^8)+(E2.^8)));

e = (P4./(KiLP.*(1+(cLT.*T))));

f = (((1+(cLP.*P4))./(1+(cLE.*E2))));

g = (h1./(1+((cPT.*T)./T0)));

h = (h2./(1+(cPF.*FSH)));

j = ((Phi+Omega+Lambda)./Psi);

k = (Phi+(T1.*Omega)+(T3.*(1-j)));

F1 = (LH.^2./(K1.*LH.^2+K2.*LH+K3));

F2 = (LH./(K1.*LH.^2+K2.*LH+K3));

pp = ((t1.*G1.*(F1+(cTF2.*F2)))+(t2.*G1.*F1));

r = (((tg2.*FSH)./(h3+FSH)).*Tgamma);

u = ((p.*LH)./(LH+hP));

%FSHp’

ddt(1) = (vF./(1+cFI.*q))-(kF.*b.*FSHp);

%FSH’

ddt(2) = ((1/V).*kF.*b.*FSHp)-(dF.*FSH);

%LHp’

ddt(3) = (((v0L.*c)+(v1L.*d)).*(1./(1+e)))-(kL.*f.*LHp);

%LH’

ddt(4) = ((1/V).*kL.*f.*LHp)-(dL.*LH);

%Phi’

ddt(5) = ((f0.*T)./T0)+(Phi.*(((f1.*FSH.^2)./(g.^2+FSH.^2))-...

((f2.*LH.^2)./(h.^2+LH.^2))));

%Omega’

ddt(6) = (((f2.*LH.^2)./(h.^2+LH.^2)).*Phi)-(w.*S.*Omega);

%Lambda’

ddt(7) = (w.*S.*Omega) - (l.*(1-S).*Lambda);

%S’

ddt(8) = (((s.*LH.^4)./(hs.^4+LH.^4)).*(1-S))-(dS.*S);

%T’

ddt(9) = t0 - (dT.*T) + (pp.*k);

%Tgamma’

ddt(10) = (tg1.*G1.*F1) - r;

92 of 102



%E2’

ddt(11) = e0-(dE.*E2)+(r.*(Phi+(N.*Lambda.*S)));

%P4’

ddt(12) = -(dP.*P4) + (Lambda.*S.*u);

end

s1 = ode23s(@testoi116974, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

X1 = s1.y;

s2 = ode23s(@testoi161606, [0 365], [116.82 142.5 250.35 25.34 0.50185 9.7509 ...

4.102 0.050498 273.67 0.003999 56.387 0.468]);

X2 = s2.y;

TMatI = [X1(9,1:1000); X2(9,1:1000)];

LHMatI = [X1(4,1:1000); X2(4,1:1000)];

FSHMatI = [X1(2,1:1000); X2(2,1:1000)];

E2MatI = [X1(11,1:1000); X2(11,1:1000)];

P4MatI = [X1(12,1:1000); X2(12,1:1000)];

figure(1)

subplot(2,3,1)

plot(1:1000,TMatI)

title(’T (ng/L)’)

subplot(2,3,2)

plot(1:1000,LHMatI)

title(’LH (g/L)’)

subplot(2,3,3)

plot(1:1000,FSHMatI)

title(’FSH (g/L)’)

subplot(2,3,4)

plot(1:1000,E2MatI)

title(’E2 (ng/L)’)

subplot(2,3,5)
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plot(1:1000,P4MatI)

title(’P4 (ng/mL)’)
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D R Source Code

D.1 Plotting Figures 24-26

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

binsulin_no_ozempic_1hour = c(81.0846,81.1462,81.9225,82.7105,

83.51,84.1574,84.239,84.3045,84.3125,84.3192)

binsulin_ozempic_1hour = c(82.1989,82.2582,83.0094,83.7757,

84.5553,85.1882,85.2676,85.3323,85.3403,85.3467)

lm5 = lm(binsulin_no_ozempic_1hour~k2)

lm6 = lm(binsulin_ozempic_1hour~k2)

plot(k2, binsulin_no_ozempic_1hour, col = "deeppink1", xlim = c(0,0.003),

ylim = c(80, 86), main = ’Insulin and insulin-mediated glucose uptake (IMGU)

1 hour after OGTT’, xlab = "Value of k2 parameter", ylab = "Insulin levels (mU/L)")

abline(lm5,col = "deeppink1")

points(k2, binsulin_ozempic_1hour, col = "orchid1")

abline(lm6,col = "orchid1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"), col =

c("deeppink1", "orchid1"), lty = c(1,1), cex = 0.75)

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

binsulin_no_ozempic_2hour = c(50.4366,50.4936,51.2144,51.9488,52.6962,

53.304,53.3805,53.4418,53.4495,53.4557)

binsulin_ozempic_2hour = c(52.9768,53.033,53.7445,54.4722,55.2157,55.8215,

55.8979,55.9591,55.9667,55.9729)

lm7 = lm(binsulin_no_ozempic_2hour~k2)

lm8 = lm(binsulin_ozempic_2hour~k2)

plot(k2, binsulin_no_ozempic_2hour, col = "deeppink1", xlim = c(0,0.003),

ylim = c(50,57), main = ’Insulin levels and IMGU 2 hours after OGTT’,

xlab = "Value of k2 parameter", ylab = "Insulin levels (mU/L)")

abline(lm7,col = "deeppink1")

points(k2, binsulin_ozempic_2hour, col = "orchid1")

abline(lm8,col = "orchid1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("deeppink1", "orchid1"), lty = c(1,1), cex = 0.75)

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

binsulin_no_ozempic_1day = c(9.99747,10.0278,10.4169,

10.8246,11.2516,11.6073,11.6527,11.6891,11.6937,11.6974)
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binsulin_ozempic_1day = c(14.1408,14.1776,14.6467,15.1335,15.6384,

16.0555,16.1085,16.151,16.1563,16.1606)

lm1 = lm(binsulin_no_ozempic_1day~k2)

lm2 = lm(binsulin_ozempic_1day~k2)

plot(k2, binsulin_no_ozempic_1day, col = "deeppink1", xlim = c(0,0.003),

ylim = c(9, 17), main = ’Insulin levels and IMGU after one day’,

xlab = "Value of k2 parameter", ylab = "Fasting insulin levels (mU/L)")

abline(lm1,col = "deeppink1")

points(k2, binsulin_ozempic_1day, col = "orchid1")

abline(lm2,col = "orchid1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("deeppink1", "orchid1"), lty = c(1,1), cex = 0.75)

D.1.1 Plotting Figures 28-30

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

bglucose_no_ozempic_1hour = c(5.61833,5.64117,5.92692,6.21296,

6.49932,6.72868,6.75734,6.78031,6.78321,6.78548)

bglucose_ozempic_1hour = c(4.20944,4.23352,4.53418,4.83494,

5.13581,5.37668,5.40674,5.43082,5.43383,5.43623)

lm9 = lm(bglucose_no_ozempic_1hour~k2)

lm10 = lm(bglucose_ozempic_1hour~k2)

plot(k2, bglucose_no_ozempic_1hour, col = "forestgreen", xlim = c(0,0.003),

ylim = c(4,7), main = ’Glucose levels and IMGU 1 hour after OGTT’,

xlab = "Value of k2 parameter", ylab = "Glucose levels (mmol/L)",)

abline(lm9,col = "forestgreen")

points(k2, bglucose_ozempic_1hour, col = "royalblue1")

abline(lm10,col = "royalblue1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("forestgreen", "royalblue1"), lty = c(1,1), cex = 0.75)

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

bglucose_no_ozempic_2hour = c(4.41239,4.43441,4.71001,4.98599,

5.26208,5.48408,5.51187,5.53404,5.5368,5.53904)

bglucose_ozempic_2hour = c(3.5146,3.53792,3.82944,4.121,

4.41277,4.64636,4.67557,4.69894,4.70187,4.7042)

lm11 = lm(bglucose_no_ozempic_2hour~k2)

lm12 = lm(bglucose_ozempic_2hour~k2)

plot(k2, bglucose_no_ozempic_2hour, col = "forestgreen", xlim = c(0,0.003),
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ylim = c(3,6), main = ’Glucose levels and IMGU 2 hours after OGTT’,

xlab = "Value of k2 parameter", ylab = "Glucose levels (mmol/L)",)

abline(lm11,col = "forestgreen")

points(k2, bglucose_ozempic_2hour, col = "royalblue1")

abline(lm12,col = "royalblue1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("forestgreen", "royalblue1"), lty = c(1,1), cex = 0.75)

k2 = c(0.00204,0.002,0.0015,0.001,0.0005,0.0001,0.00005,0.00001,0.000005,0.000001)

bglucose_no_ozempic_oneday = c(3.99955,4.01186,4.16878,4.33133,

4.49961,4.63841,4.65602,4.67015,4.67192,4.67333)

bglucose_ozempic_oneday = c(3.74527,3.76048,3.95302,4.14992,

4.35121,4.5154,4.53612,4.55273,4.55481,4.55648)

lm3 = lm(bglucose_no_ozempic_oneday~k2)

lm4 = lm(bglucose_ozempic_oneday~k2)

plot(k2, bglucose_no_ozempic_oneday, col = "forestgreen", xlim = c(0,0.003),

ylim = c(2,5), main = ’Glucose levels and IMGU after one day’,

xlab = "Value of k2 parameter", ylab = "Basal glucose levels (mmol/L)")

abline(lm3,col = "forestgreen")

points(k2, bglucose_ozempic_oneday, col = "royalblue1")

abline(lm4,col = "royalblue1")

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("forestgreen", "royalblue1"), lty = c(1,1), cex = 0.75)

D.1.2 Plotting Figure 31

lm13=lm(binsulin_no_ozempic_1day~bglucose_no_ozempic_oneday)

lm14=lm(binsulin_ozempic_1day~bglucose_ozempic_oneday)

plot(bglucose_no_ozempic_oneday,binsulin_no_ozempic_1day,col=’forestgreen’,

xlim=c(3.5,5),ylim = c(9,17),

main = ’Glucose levels and insulin levels after one day’,

xlab = "Basal glucose levels (mmol/L)", ylab = "Fasting insulin levels (mU/L)")

abline(lm13,col=’deeppink1’)

points(bglucose_ozempic_oneday,binsulin_ozempic_1day,col=’royalblue1’)

abline(lm14,col=’orchid1’)

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("deeppink1", "orchid1"), lty = c(1,1), cex = 0.75)
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D.1.3 Plotting Figures 32 and 33

alpha= function(I) 0.625*I-6.25

plot(bglucose_ozempic_oneday,alpha(binsulin_ozempic_1day),col=’orchid1’,

xlim=c(3.5,5), ylim=c(0,5), main = ’Glucose levels and insulin influence on

testosterone production’, xlab = "Basal glucose levels (mmol/L)",

ylab = "Degree of insulin influence")

points(bglucose_no_ozempic_oneday,alpha(binsulin_no_ozempic_1day),col=’deeppink1’)

lm15=lm(alpha(binsulin_no_ozempic_1day)~bglucose_no_ozempic_oneday)

lm16=lm(alpha(binsulin_ozempic_1day)~bglucose_ozempic_oneday)

abline(lm15,col=’forestgreen’)

abline(lm16,col=’royalblue1’)

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("forestgreen", "royalblue1"), lty = c(1,1), cex = 0.75)

lm20 = lm(alpha(binsulin_no_ozempic_1day)~k2)

lm21 = lm(alpha(binsulin_ozempic_1day)~k2)

plot(k2,alpha(binsulin_no_ozempic_1day), xlim=c(0,0.0021),

ylim=c(0,5),col=’darkorchid4’,

main=’IMGU and insulin influence on testosterone production’,

xlab = "Value of k2 parameter", ylab = "Degree of insulin influence")

points(k2,alpha(binsulin_ozempic_1day),col=’springgreen4’)

abline(lm20,col=’darkorchid1’)

abline(lm21,col=’springgreen2’)

legend("topright", legend = c("Without Ozempic", "With Ozempic"),

col = c("darkorchid1", "springgreen2"), lty = c(1,1), cex = 0.75)
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