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Abstract

This thesis broadly focuses on mathematical modeling approaches to solving
various issues in sustainability, broken up into two parts, each dealing with specific,
but distinct, sustainability issues.

The first part of this thesis is expository, focusing on the modeling of groundwater
flow and water table heights given limited information. We begin with the back-
ground of the subject, examining how groundwater flow works in the physical world
(Section 1.1). We then delve into a derivation of Darcy’s Law for two-dimensional
flow of groundwater from base principles (Section 1.2). From there we derive the
two-dimensional Laplace equation for flow (Section 1.5). We then develop a central
difference approximation to solve for intermediate water table heights between two
given points, and intermediate water table heights given boundary conditions by
solving a system of linear equations (Section 1.6). We then examine two methods of
solving this system of linear equations, and compare rates of convergence for both
(Section 1.8). We also implement both of these methods into solvers in MATLAB
(Appendix 4.1, 4.2, 4.3).

The second part of this thesis is case-based problem solving in a different area
of mathematics. We use queuing theory and simulation principles to determine
the number of electric car chargers needed to support an electric vehicle fleet on
the Bryn Mawr campus, based on current usage numbers for Bryn Mawr vehicles.
The model takes in the number and type of electric vehicles, along with their daily
use. We then run a simulation to determine whether the current charger level can
support the car use with minimal waiting in queues for the charger, depending on
the number of available chargers.
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Figure 1: Illustration of Aquifer

1 Part I: Groundwater Flow

1.1 Background

In this section, we follow the presentation of Math Modeling in the EnvironmentHadlock
[1998]. We shall begin with an explanation of the basic mechanics of groundwater
flow and the motivation for research into this phenomenon.

Below the surface of the Earth lie several layers of soil and rock. The spaces
between these subsurface soil particles are filled with groundwater. Groundwater
flows through the spaces between soil particles, flowing in the direction of the steep-
est decline of the land. Groundwater does not flow quickly, but it is always flowing.
Water on the surface of the Earth becomes groundwater either through precipitation
seeping into the ground or through surface bodies of water seeping into the ground.
These sources fill up open spaces in the subsoil up till a certain height. This height
is called the water table. Because the underground cannot be directly observed,
we need to make models to understand how groundwater is behaving given only a
few data points. We can understand the direction and rate of flow of ground wa-
ter, along with the locations at which contamination may have been added to the
groundwater.

Surface bodies of water are in fact portions of the water table that extend above
the land. Water below the water table is groundwater. The portion of the under-
ground through which groundwater flows without obstruction is called the aquifer.
The water table aquifer is the portion of the subsurface just below the water table.

In Figure 1, the upland pond serves as a source of water into the water table
aquifer. We can alternatively refer to this as a source of groundwater recharge.
This is not the only possible source for groundwater recharge. A large portion of
precipitation on the surface of the earth also seeps into the ground, while the rest
evaporates or runs directly into surface water bodies.
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In Figure 1, the river serves as a discharge zone for groundwater, as the ground-
water from the aquifer can return to the surface via the river by entering the stream
bank below the river’s surface.

This is where the large-scale impact of groundwater becomes clearer. While
groundwater does not move quickly, it moves steadily, and pollution of groundwa-
ter has a cumulative effect. For example, if groundwater flows along a number of
contaminated site, at the end of these sites, the groundwater will be highly contami-
nated, as all the contaminants will have entered the groundwater. This groundwater
can enter discharge zones and will contaminate the surface water steadily.

Aquifers generally consist of two types of material – soil and bedrock. In order
of decreasing particle size, some common materials making up soil include gravel,
sand, silt, and clay. Bedrock can be made of a variety of types of solid rock. While
groundwater can pass through spaces between soil particles, groundwater cannot do
so in bedrock, but some bedrock, like sandstone, is porous, while other bedrock, like
limestone, has interconnected fracture networks. Thus water can flow through both
soil and bedrock.

These different materials can be classified based on how much they resist wa-
ter flow. Aquicludes are materials which block water flow entirely. Aquitards are
materials which significantly resist water flow. Some examples of aquitards for soil
include clays and fine silts. Bedrock aquitards include salt as well as unfractured
formations of shale or granite.

The water table most often follows the topography of the land, but there can also
be distinct aquifers of different depths, flowing independently and separated from one
another by aquicludes. Additionally, deeper aquifers may have flow patterns more
complex than simply the topography of the surface due to the distance between
recharge zones, the effect of fault zones, as well as pressure from the rock above.

We shall now discuss the motivation for study of groundwater flow, and quanti-
tative questions that can be addressed using our study. Take the following scenario:

Consider the scenario illustrated in Figure 2, where the dotted lines show con-
tours of constant water table heights. Suppose we have a “small leak” from a tank
stored underground at the service station. If residents live close to the service sta-
tion and rely on drinking groundwater from an area close to the station, we may be
concerned about contamination of this water.

Suppose a leak occurs from corrosion in an gasoline storage tank. Then the
surrounding soil would be contaminated, and so rainwater seeping through the soil,
along with the natural forces of gravity would carry the contaminant down to the
aquifer, from where the contaminant would be constantly carried in the direction of
general groundwater movement (indicated by red arrows).

This leads to the following crucial questions: We want to understand how much
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Figure 2: A Scenario of Contaminants Spread By Groundwater

gasoline leaked, for how long it has been leaking, as well as the direction and speed
of groundwater flow.

A series of steps can be taken to understand and answer our questions, beginning
with underground sampling using test and monitoring wells. These are holes sunk
through one or more layers of subsurface soil, lined with pipe so that we may gather
water from our point of interest. However, these wells are disruptive to the area and
expensive. We want to use math so that we can answer our questions while using
fewer wells.

The questions we are asking can be broken down into two broad questions:
I. How much groundwater is flowing through a portion of an aquifer? This is

useful because if we can figure out the rate at which contaminant is seeping into the
groundwater, we can estimate contaminant concentration in the groundwater. This
question can be answered by Darcy’s Law, which we will be deriving in Section 1.2.

II. What is the rate at which the groundwater is flowing? Answering this allows
us to understand how far contamination might have spread since it was first intro-
duced, as well as the amount of time left to keep it from spreading much farther.
This question can be answered by the interstitial velocity equation, which will be
derived in Section 1.2.
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Figure 3: Baseline Experiment

1.2 Derivation of Darcy’s Law and Interstitial Velocity Equa-

tion

We shall begin by deriving Darcy’s Law from first principles. The intuition we
shall use is backed up by Darcy’s experiments. We wish to better understand how
groundwater flows through different geologic mediums. We can begin with a “base-
line experiment” of sorts in Figure 3 in which we understand flow rates through
different size sand filters.

This baseline consists of a piston pushing water forward with pressure P through
a sand filter of length L and cross-sectional area A. There is a pressure gradient
across the sand filter, and on the other side of the sand filter, the pressure is 0, so
the water can freely flow with rate Q through the sand filter.

First, let us try to understand how pressure might affect flow rate. It is clear
through intuition that doubling pressure, P , should double the flow rate, Q, and so
we see that P ∝ Q.

Now let us say that we double the length of our geologic sample/sand filter.
Then since the pressure uniformly decreases along the length of our sand filter, it
follows that with the same pressure P and an doubled length of sand filter L, the
flow rate Q will be halved. This means that 1

L
∝ Q, or that flow rate and sample

length are inversely proportional.
Finally, let us consider the cross-sectional area of our sample/sand filter. If we

double the area, A, keeping the pressure, P , the same, we can flow through twice as
much water, Q, and so A ∝ Q.

Now, to better relate this to groundwater flow specifically, let us alter our baseline
experiment. Instead of using a piston as our source of pressure for water, we can
use the weight of a column of water to drive water pressure, as seen in Figure 4.

The pressure caused by the column of water is due to the height difference in
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Figure 4: Darcy’s Experiment for Groundwater Flow

the water table. Numerically, this is the difference in heights, or ∆h = h1 − h2. If
h1 = h2, then the water pressure is equal on both sides so no flow would occur, as
the system would be at equilibrium. However, if h1 > h2, then pressure on the left
side would be greater than the pressure on the right side, resulting in a pressure
gradient. Then there would be flow from the left to the right until an equilibrium
is reached.

To summarize, we have that:

1. The flow rate is proportional to the net driving pressure, ∆h.

2. The flow rate is inversely proportional to the length L of our geologic sample.

3. The flow rate is proportional to the cross-sectional area A of our flow pathway.

4. From intuition, the constant of proportionality for the above relationships
depends on the geologic medium through which the water is passing.

Combining these ideas, and replacing P with ∆h, we get Darcy’s Law, which
states that

Q

A
=

k∆h

L
,

where k is our aforementioned constant of proportionality, depending on the geologic
medium. Let’s simplify this equation a bit, by separating flow rate Q on one side of
the equation and combining some terms.

Let us have
i =

∆h

L
,

9



and call i the hydraulic gradient, to represent the combined effect of the pressure
difference on either side of the geologic medium and the length of the flow through
that medium. If flow rate and pathway length are both doubled, the hydraulic
gradient does not change.

Thus our finalized Darcy’s Law reads

Q = kiA. (1)

Now we shall derive the Interstitial Velocity Equation, which tells us the rate at
which groundwater is flowing through a medium. In order to derive this, let us begin
by assuming that water is flowing through an aquifer according to the principle of
Darcy’s Law.

We shall then focus on a single square foot of this aquifer’s cross section, and
assume this channel is an “open channel,” meaning it provides no resistance to the
flow of water whatsoever. Let’s now assume that we know that 10 cubic feet of water
is flowing out of the end of this cross section of the channel per minute. We can try
to derive the flow rate of water in order for this velocity to be possible. Recall that
we are looking at a cross-sectional area of 1 square foot. Thus

velocity of water ft
min

· 1 ft2 area =
10ft3 water exiting channel

min
velocity of water ft3

min
=

10ft3 water exiting channel
min

Thus we find that the water must be flowing at a rate of 10 feet per minute. Another
way of conceptualizing this problem is by viewing it as a volume problem – in order
for x cubic feet of water to come out from a square foot area per minute, what length
must the water have traveled in a minute? In mathematical terms, this is

volume = area · length,

where length is synonymous with velocity in this case, as seen in Figure 5.
One thing to note about this concept is that this relationship holds regardless of

porosity of the geologic medium. With a porous material, it is simply the case that
the path through which the water flows will not be straight, but the net fluid flow
velocity in the flow direction will be the same as though a portion had been entirely
closed off instead, as illustrated in Figure 6. Thus the porosity, η, represents the
percentage of the geologic medium through which water can flow.

This net velocity along the axis of predominant flow is called the interstitial
velocity, or the velocity of groundwater. This answers our question of how far a
dissolved contaminant has traveled from the source over a period of time.
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Figure 5: Illustration of Volume and Velocity Relationship

Figure 6: Porous flow vs. Closed-off channel
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In order to determine fluid velocity in an aquifer, we need the volumetric fluid
flow through a unit cross-sectional analysis, then divide this by the porosity of the
aquifer.

Let q be the volumetric fluid flow through a unit cross-sectional area of an aquifer
(we can do this by using Darcy’s Law and setting A = 1). Then we have for Darcy’s
Law that

Q = kiA,

and so
q = ki(1) = ki.

Therefore we have for our velocity v that

v =
q

η

⇒ v =
ki

η
,

the Interstitial Velocity Equation.
It follows that after calculating velocity v, we can find the amount of time t it

takes the groundwater to travel a certain distance d in direction of flow, since

v =
d

t
⇒ t =

d

v
.

It is important to note that certain contaminants do degrade over time or enter
into chemical reactions with the surrounding rock or soil matrix, reducing their
mobility. However contaminant flow is still a ticking time bomb that can travel for
long periods of time without detection. When detected, the extent of the problem
and amount of contaminant may still be huge and result in costly or even infeasible
remedial action.

Now that we have derived equations to answer our most pressing mathematical
questions about groundwater flow, we shall review the parameters in each of these
equations.

Recall that Darcy’s Law states that

Q =
kA∆h

L
= kiA,

and that the Interstitial Velocity Equation states that

v =
q

η
=

ki

η
.

The parameters for each of these equations, as well as their units, are stated below.
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k: hydraulic conductivity (length/time)
i: hydraulic gradient (no units, the “slope” of water flow)
A: cross-sectional area of flow pathway, or the portion of aquifer under consideration
(area, length2)
η: porosity (no units, represents the fraction of open space in aquifer material)
Q: volumetric flow rate (volume/time, length3/time)
q: flux, the volumetric flow rate through a cross-sectional area of one unit (length-
/time)
v: velocity of fluid (length/time)
∆h: hydraulic head, the height of the water level above a given reference point
(length)
L: length of flow pathway under consideration (length)

There are a few remarks to be made about these parameters. First, we notice
that the hydraulic conductivity k, the flux q, and the velocity v of our fluid are all in
the same units – length/time. However, they all represent vastly different ideas. The
hydraulic conductivity is a constant of proportionality that depends on the geologic
medium through which groundwater is flowing – it broadly represents how easily
water flows through, and its units are length/time to correspond with the units
for Darcy’s Law. On the other hand, the flux is the volumetric flow rate through
a unit cross sectional area, so can be thought of as length3/time · 1/area, which
equals length3/time · 1/length2, which in turn equals length/time after cancelling
out like units. Finally, velocity is distance traveled per unit time, and so its units
are length/time.

The second remark is that porosity and hydraulic conductivity are not related.
A more porous material may still be an aquitard or aquiclude. For instance, clay is
porous but its pores are far too small for water to pass through.

1.3 Construction of Contour Maps from Test Wells

We can use test wells to determine the depth of the water table at certain points,
and from these head values can construct a contour map of the water table.

This contour map, like any other, shows us the locations of constant head values.
It is particularly useful to know the the topography of the land, because the water
table heights generally mirror the slope of the land above. Furthermore, groundwater
usually flows in the direction of steepest descent – the gradient. Thus groundwater
will flow perpendicular to the head contour line at that point. The reason that this
is not always true of groundwater is because flow can still be deflected by the shape
of fractures in bedrock, or by the orientation of pore spaces, but we shall ignore this
case in the problems we study.
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Figure 7: Continuous vs. Discrete i

1.4 Continuous form of Darcy’s Law for One-Dimensional

Flow

Now we shall use our work in prior sections to derive the continuous version of
Darcy’s Law. Recall Darcy’s Law, which states that

Q = kiA and v =
ki

η
, with

i =
∆h

L
.

We had called the hydraulic gradient i the “slope” of water flow, and will now
treat it as a derivative of the hydraulic head function, a continuous function taking
a point in space to its hydraulic head height.

For this section, we are treating flows as being sufficiently horizontal. In other
words, we shall assume that the head value does not depend on the depth of the
point at which we sample the aquifer – it only depends on where we are on the axis
of horizontal flow.

We will now start considering ∆h to be the loss in head rather than change in
head, as seen in Figure 7. So, to get the hydraulic gradient i at a specific point x,
we have

i = lim
∆x→0

−[h(x+∆x)− h(x)]

∆x

= − lim
∆x→0

h(x+∆x)− h(x)

∆x

⇒ i = −dh

dx
. (2)

Therefore we find that
Q = kiA = −k

dh

dx
A.
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Figure 8: Example One-Dimensional Flow Problem

It then follows that

v =
q

η
=

−k dh
dx

η
.

Now let us look at an application of the continuous form of Darcy’s Law to clearly
understand implications of this equation. Suppose we have the following head values
for points at x = 1000 and x = 3000, where h(1000) = 70 and h(3000) = 50, as
illustrated in Figure 8.

Due to the conservation of matter, the flow entering the left face of a geologic
sample must equal the flow exiting the right face of a geologic sample.

It then follows that qleft = qright, and so

Qleft = −kileftA = −kirightA = Qright.

Therefore ileft = ileft since the geologic medium and cross-sectional area must
remain constant. Using equation 2, we find that

h(3000)− h(2000)

3000− 2000
=

h(2000)− h(1000)

2000− 1000

⇒ 50− h(2000)

1000
=

h(2000)− 70)

1000

⇒ 50− h(2000) = h(2000)− 70

⇒ h(2000) = 60.

We can make a couple of observations from this application.

1. We must place strict constraints on any function representing hydraulic head
distribution, especially if hydraulic conductivity k is assumed to be constant.

2. There is an interplay between assumptions that a hydrologist might make
about hydraulic conductivity and the predictions that might result concerning
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hydraulic head values, as our equations directly depend on hydraulic conduc-
tivity, k.

In fact, under constant hydraulic conductivity, the hydraulic head function h

must satisfy Laplace’s Equation:
d2h

dt2
= 0.

It follows that if the second derivative of h is 0, then the first derivative of h
must be a constant, meaning that h is linear and so is of the form h(x) = mx + b

for m, b ∈ R. Then

hx = m and

hxx = 0.

Since water is incompressible, the net amount of fluid entering a fixed incremental
volume at any moment must be 0, due to the laws of conservation of mass.

1.5 Laplace Equation in 1 and 2 Dimensions

We shall now prove that groundwater flow must satisfy Laplace’s Equation. First
we will prove this for one dimension. Since Q = kiA by Darcy’s Law, and we just
showed that

flow through left face − flow through left face = 0

⇒ k(−hx(x))A− k(−hx(x+∆x))A = 0

Since we presume that the geologic medium is not an aquiclude, and the cross-
sectional area we are examining is nonzero, we can divide both sides by −kA, getting

hx(x)− hx(x+∆x) = 0

⇒ hx(x)− hx(x+∆x)

∆x
= 0.

We can do this because we are assuming ∆x is a nonzero value. We can now try to
take the limit of both sides as ∆x approaches 0, getting

lim
∆x→0

hx(x))− hx(x+∆x)

∆x
= lim

∆x→0
0

⇒ lim
∆x→0

hx(x))− hx(x+∆x)

∆x
= 0

⇒ dhx

dt
= 0

⇒ hxx(x) = 0

16



As we took arbitrary x initially, it follows that hxx = 0 for all, x ∈ R, and so we
have shown Laplace’s equation holds for 1 dimension.

Now we shall derive Laplace’s Equation for increased dimensions. In one dimen-
sion, we had hxx = 0, meaning that we could only have linear functions for solutions.
However, for two or more dimensions, Laplace’s Equation gets a bit more compli-
cated, and the space of “allowed” head functions exams. For instance, Laplace’s
Equation in two dimensions states that

hxx + hyy = 0,

and Laplace’s Equation in three dimensions states that

hxx + hyy + hzz = 0.

It must be noted that these equations apply strictly to the case of isotropic aquifers
(the geologic medium remains the same under the content being considered) with
constant hydraulic conductivity k.

We can rewrite the two- and three-dimensional versions of Laplace’s Equation
in terms of partial derivatives as follows:

For two dimensions:
∂2h

∂x2
+

∂2h

∂y2
= 0

For three dimensions:
∂2h

∂x2
+

∂2h

∂y2
+

∂2h

∂z2
= 0.

Note that these are partial differential equations. Therefore, in order to solve them,
we must make sure our solution fits a set of boundary conditions. This is analogous
to what we did in our example in Section 1.4.

We shall now derive Laplace’s Equation for flow in horizontal x and y directions,
again assuming vertical flow is negligent.

Think of Figure 9 as a three-dimensional situation, where z is perpendicular
to the drawing. The flow in the z-direction is assumed to be negligible, but the
aquifer does have a thickness, and z characterizes the position through that thick-
ness. We are also assuming our aquifer, as before, is isotropic and uniform, so k will
characterize our hydraulic conductivity throughout the medium.

The net flow through the rectangular prism of incremental volume in Figure 10
should be zero, as stated before, due to the conservation of mass. The fluid flux q

is a vector with components q1 in the x-direction and q2 in the y-direction. Because
we are assuming negligible vertical flow in the z-direction, we may assume that fluid
can be entering through four of six faces – i.e. all the faces that are not the top
or bottom face. We never need to consider z-coordinates for any points, because
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Figure 9: Volume Increment in a Groundwater Flow Field Exhibiting 2D Flow

Figure 10: Rectangular Prism of Incremental Volume
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everything is assumed to be constant in the z-direction.
Along the left face, the inward fluid flux (which may change with y) can be

represented by the one specific fluid flux at the center of the left face, i.e. q1(x −
∆x, y). This is the first component of the flux vector q, and is the only one relevant
to the left face, because we do not care about y-component flow when looking exactly
at the left face.

We may make similar assumptions along the other three faces. From this, we
get

0 = left flow in + right flow in + up flow in + down flow in.

Using our equations we derived for each of these sides from Figure 10, we get

0 = q1(x−∆x, y)(2∆y · 1)− q1(x+∆x, y)(2∆y · 1)

+ q2(x, y −∆y)(2∆x · 1)− q2(x, y +∆y)(2∆x · 1).

From here, we may derive the two-dimensional Laplace Equation using our con-
tinuous flux equation.

0 = q1(x−∆x, y)(2∆y · 1)− q1(x+∆x, y)(2∆y · 1)

+ q2(x, y −∆y)(2∆x · 1)− q2(x, y +∆y)(2∆x · 1)

⇒ 0 = −h(x−∆x, y)k(2∆y) + h(x+∆x, y)k(2∆y)

− h(x, y −∆y)k(2∆x) + h(x, y +∆y)k(2∆x)

⇒ 0 = −2h(x−∆x, y)∆y + 2h(x+∆x, y)∆y

− 2h(x, y −∆y)∆x+ 2h(x, y +∆y)∆x.

Now let us divide both sides by 2∆x∆y, both of which takes nonzero values only.
Doing so, we get

0 =
h(x+∆x, y)− h(x−∆x, y)

2∆x
+

h(x, y +∆y)− h(x, y −∆y)

2∆y

⇒ lim
∆x→0

0 = lim
∆x→0

[
h(x+∆x, y)− h(x−∆x, y)

2∆x
+

h(x, y +∆y)− h(x, y −∆y)

2∆y

]
⇒ 0 = lim

∆x→0

h(x+∆x, y)− h(x−∆x, y)

2∆x
+

h(x, y +∆y)− h(x, y −∆y)

2∆y

⇒ 0 = hxx(x) +
h(x, y +∆y)− h(x, y −∆y)

2∆y

⇒ lim
∆y→0

0 = lim
∆y→0

[
hxx(x) +

h(x, y +∆y)− h(x, y −∆y)

2∆y

]
⇒ 0 = hxx(x) + hyy(y).

Thus we have derived Laplace’s Equation for two dimensions. Functions satisfying
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this property are called harmonic functions.
There are two key characteristics to situations satisfying Laplace’s Equation:

1. The flow of quantity is at a rate proportional to the gradient of some “potential”
(pressure difference from varying hydraulic heads, in this situation).

2. Conservation condition (conservation of mass and volume here) requiring that
through the flow regime, no material spontaneously appears or disappears.

We will now begin solving boundary problems using linear approximations in the
next section.

1.6 Numerical Methods for Solving Head Value Boundary

Problem

Our broad strategy to finding numerical solutions for head values is to find a system
of linear equations that are a reasonable approximation to our partial differential
equations. We then shall solve that system of equations.

We know that the definition of a derivative is

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
.

Thus, for small ∆x, it follows that

f ′(x) ≈ f(x+∆x)− f(x)

∆x
.

In fact, we see that if our function f does not have a high degree of curvature, the
slope of the secant line is a reasonable approximation to the slope of the tangent
line.

Three different approximations can be seen from Figure 11. They are the forward
difference approximation

f ′(x) ≈ f(x+∆x)− f(x)

∆x
,

the backward difference approximation,

f ′(x) ≈ f(x)− f(x−∆x)

∆x
,

and the central difference approximation

f ′(x) ≈ f(x+∆x)− f(x−∆x)

2∆x
.
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Figure 11: Examples of Linear Approximations of Function Values

We can use the central difference approximation at the second derivative as follows:

f ′′(x) ≈
f ′(x+ ∆x

2
)− f ′(x− ∆x

2
)

∆x

⇒ f ′′(x) ≈
f(x+∆x)−f(x)

∆x
− f(x)−f(x−∆x)

∆x

∆x

⇒ f ′′(x) ≈ f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
.

Plugging this in to our hydraulic head functions, we get the following approxi-
mations:

hxx(x, y) ≈
h(x+∆x, y)− 2h(x, y) + h(x−∆x, y)

∆x2

hyy(x, y) ≈
h(x, y +∆y)− 2h(x, y) + h(x, y −∆y)

∆y2
.

Recall that we derived the two-dimensional Laplace Equation, which states that

hxx + hyy = 0,

so plugging in these approximations, we get that

h(x+∆x, y)− 2h(x, y) + h(x−∆x, y)

∆x2
+
h(x, y +∆y)− 2h(x, y) + h(x, y −∆y)

∆y2
= 0.

Suppose we have a site where the distance between wells in the x direction is
d, and the distance between wells in the y direction is also d. Then our equation
becomes

h(x+ d, y)− 2h(x, y) + h(x− d, y)

d2
+

h(x, y + d)− 2h(x, y) + h(x, y − d)

d2
= 0.
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Figure 12: Example of Boundary Value Head Problem

We can multiply both sides by d2, and get

h(x+ d, y)− 2h(x, y) + h(x− d, y) + h(x, y + d)− 2h(x, y) + h(x, y − d) = 0.

Simplifying this further, we see that

4h(x, y) = h(x+ d, y) + h(x− d, y) + h(x, y + d) + h(x, y − d),

and dividing both sides by 4, we have

h(x, y) =
1

4
(h(x+ d, y) + h(x− d, y) + h(x, y + d) + h(x, y − d)).

As we can see in Figure 12, we find that, using this linear approximation, the water
table height at a point (x, y) is simply the average of the water table heights in the
x- and y- directions a distance of d away.

Let us now look at this approximation applied to the following example:
Suppose we want to find the height of h25, located at point (5000,1000). Using

our approximation of the Laplace equation, with ∆x = ∆y = 1000, we get that

0 =
340− 2h25 + h20

10002
+

h24 − 2h25 + 300

10002

⇒ 0 = 340 + h20 + h24 + 300− 4h25

⇒ h25 =
340 + h20 + h24 + 30

4
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Figure 13: Example Boundary Value Problem for 25 Wells
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In other words, the head height of h25 is equal to the average of the four heads
surrounding its cardinal directions.

This leads us to the last portion of our work in water table height derivations.
Now, given a set of boundary values of hydraulic head heights, we can solve a system
of linear equations to find the hydraulic head heights at the interior points.

1.7 Constructing a System of Linear Equations for Water

Table Heights

In order to understand how to construct our system of linear equations, let us take
a look at an example problem. Suppose we want to find the water table heights
ai in a 3× 3 square, where the boundary values bPi are provided (where P is their
position, like top, bottom, left, or right, and i is their index in that position. For
instance, bL3 is the third entry in the left boundary). The set up looks something
like this:

bTL bT1 bT2 bT3 bTR

bL1 a1 a2 a3 bR1

bL2 a4 a5 a6 bR2

bL3 a7 a8 a9 bR3

bBL bB1 bB2 bB3 bBR

Let us call the side length of our square of unknown values r. In this case,
r = 3. So we have to solve a r2, or 9-variable, system of 9 linear equations. We have
found that the value of a hydraulic head height is the average of the four heights
surrounding it – thus, we can view each of our linear equations as corresponding to
the average of one of our unknowns.

For example, the equation corresponding to head value a7 is:

a7 =
a2 + a12 + a6 + a8

4

⇒ 0 = a2 + a6 − 4a7 + a8 + a12

We can classify our unknowns into three categories: corner unknowns, border
unknowns, and center unknowns. Corner unknowns, like a1, a3, a7, and a9, border
exactly two known boundary values, as seen above. Border unknowns, like a2, a4, a6,
and a8, border exactly one known boundary value, as seen above. Finally, center
unknowns, like a5, border no known boundary values. As r increases, we find that
the majority of unknowns will be center unknowns, but in our current example, only
a5 is a center unknown. We use this classification in order to set up generalizations
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for the different linear equations we will see corresponding to the averages of each
of these types of unknown.

Let us begin by considering the system of equations for center unknowns. We
can see that for any non-corner, non-boundary head value ai, the corresponding
linear equation is of the form:

(Center unknowns) ai: ai−r + ai−1 − 4ai + ai+1 + ai+r = 0.

Now let us consider what happens at corner unknowns. In our specific r = 3

example, the entries at the corners are entries a1, a3, a7, and a9.
In an arbitrary head value problem, the corner unknowns would be the top left

corner, a1, the top right corner, ar (because it would be the last entry in the first
row, and there are r entries per row, the bottom right corner, ar2 (because it would
be the last entry and there are a total of r2 entries), and the bottom left corner,
ar2−r+1 (because it would be the first entry in the last row, and there are r entries
per row, its index would be last entry−number of entries in row+1). We can verify
that this generalization works for our specific example by plugging in r = 3, and
getting corner entries of a1, a3, a7, and a9, as desired.

Since the corner unknowns each involve exactly two known boundary values,
they have a different set of equations:

(Top left corner) a1: bT1 + bL1 − 4a1 + a1+1 + a1+r = 0

⇒ −4a1 + a2 + a1+r = −(bT1 + bL1)

(Top right corner) ar: bTr + ar−1 − 4ar + bR1 + ar+r = 0

⇒ ar−1 − 4ar + a2r = −(bTr + bR1)

(Bottom left corner) ar2−r+1: ar2−r+1−r + bLr − 4ar2−r+1 + ar2−r+1+1 + bB1 = 0

⇒ ar2−2r+1 − 4ar2−r+1 + ar2−r+2 = −(bLr + bB1)

(Bottom right corner) ar2 : ar2−r + ar2−1 − 4ar2 + bBr + bRr = 0

⇒ ar2−r + ar2−1 − 4ar2 = −(bBr + bRr)

Finally, let us consider the equations corresponding to the border unknowns,
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which border exactly one known boundary value each. Their equations are as follows:

(Top border unknowns) ai: bT + ai−1 − 4ai + ai+1 + ai+r = 0

⇒ ai−1 − 4ai + ai+1 + ai+r = −bT

(Left border unknowns) ai: ai−r + bL − 4ai + ai+1 + ai+r = 0

⇒ ai−r − 4ai + ai+1 + ai+r = −bL

(Right border unknowns) ai: ai−r + ai−1 − 4ai + bR + ai+r = 0

⇒ ai−r + ai−1 − 4ai + ai+r = −bR

(Bottom border unknowns) ai: ai−r + ai−1 − 4ai + ai+1 + bB = 0

⇒ ai−r + ai−1 − 4ai + ai+1 = −bB

We can combine these linear equations to get a system of equations of the form
Ax = b. For our example with r = 3, our system of equations comes out to

−4 1 0 1 0 0 0 0 0

1 −4 1 0 1 0 0 0 0

0 1 −4 0 0 1 0 0 0

1 0 0 −4 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −4 0 0 1

0 0 0 1 0 0 −4 1 0

0 0 0 0 1 0 1 −4 1

0 0 0 0 0 1 0 1 −4





x1

x2

x3

x4

x5

x6

x7

x8

x9


=



−(bT1 + bL1)

−bT2

−(bT3 + bR1)

−bL2

0

−bR2

−(bL3 + bB1)

−bB2

−(bB3 + bR3)


Now that we have a method of constructing a system of linear equations, we can
explore different ways of quickly solving these systems.

1.8 Iterative Methods

Because solving large systems of equations can be quite time intensive, we will
explore two iterative numerical methods of approximating solutions to a system of
linear equations: the Jacobi and Gauss-Seidel methods. Iterative methods of solving
systems of linear equations are often much faster than Gaussian elimination. The
two methods we are focusing on have a computational complexity on the order of
n2, whereas Gaussian elimination has complexity on the order of n3. These are both
iterative numerical methods, meaning that they ideally converge to an exact solution
over time. The following analyses of iterative methods, the Jacobi Method, and the
Gauss-Seidel method follow work by David M. Strong in 2005 Strong [2005].

Iterative numerical methods can be thought of as a modification of an original
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system of equations. The original system is of the form Ax = b, where A is our
coefficient matrix, x is our vector of unknowns, and b is a column vector of constants.

These two iterative numerical methods take the form

Mx(k+1) = Nx(k) + b

⇒ x(k+1) = M−1Nx(k) +M−1b

⇒ x(k+1) = Bx(k) + b̃,

where B = M−1N and b̃ = M−1b for invertible square matrices M and N . We will
discuss the significance of M and N shortly. We call B our iteration matrix. We
have converged to our exact solution x when x(k+1) = x(k) = x, meaning that x is
the fixed point of our equation. At x, we see that

x = Bx+ b̃

⇒ x = M−1Nx+M−1b

⇒ Mx = Nx+ b

⇒ (M −N)x = b.

Recall that our original system of equations had that Ax = b, so it follows that
A = M −N . However, we must note that choosing M and N such that A = M −N

does not alone guarantee convergence. Convergence depends on our iteration matrix
B = M−1N . We can examine the conditions for convergence to occur by looking at
the error e(k) between our k + 1st iteration x(k+1) and exact solution x. Recall that

x = Bx+ b̃ and (3)

x(k+1) = Bxk + b̃ (4)

Subtracting (4) from (3), we get

x− x(k+1) = B(x− x(k)) + b̃− b̃

⇒ e(k) = Be(k−1)

= B(Be(k−2))

= Bne(k−n)

⇒ e(k) = Bke(0)
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We can then take the norm of both sides, getting that

||e(k)|| = ||Bke0||

≤ ||B||k||e(0)||.

Thus, it follows that our error e(k) converges to 0 if and only if ||B|| < 1. We notice
that the smaller ||B|| is, the faster our error will converge to 0, and so the faster our
approximation will converge to our exact solution x. However, we must also note
that if ||B|| > 1, our error will grow.

One way we can guarantee that ||B|| < 1 is by making sure that our original
coefficient matrix A is strictly diagonally dominant, meaning that for each row of
A, the absolute value of the diagonal element is strictly larger than the sum of the
absolute values of the off-diagonal elements. However, there do exist non-diagonally
dominant matrices that still converge Strong [2005]. In fact, the system of linear
equations for the boundary value problem is a non-diagonally dominant matrix that
converges to a solution.

1.9 The Jacobi Method

Let us explore the first iterative method: the Jacobi Method. Recall that our original
system of equations is of the form

Ax = b,

where A is our coefficient matrix, x is our vector of unknowns, and b is a column
vector of constants. We can split our matrix A into three components: a lower
triangular matrix L (which does not include diagonal entries), a diagonal matrix D,
and an upper triangular matrix U (which also does not include diagonal entries),
which all sum to A. Then we have Then we have

Ax = b

⇒ (L+ U +D)x = b

⇒ (L+ U)x+Dx = b

⇒ Dx = −(L+ U)x+ b

⇒ x = D−1[−(L+ U)x+ b].

If x is our exact solution, then we can see from above that we must have x =

D−1[−(L+ U)x+ b]. Thus we have

M = D and N = −(L+ U),
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such that
M −N = D − (−L− U) = L+ U +D = A.

Thus our iterative matrix B is

B = D−1(−(L+ U)),

and our b̃ is
b̃ = D−1b.

1.10 The Gauss-Seidel Method

Now let us consider our second iterative method: the Gauss-Seidel Method. Let
us similarly decompose our original coefficient matrix A into L,U, and D such that
A = L+ U +D. Then we have

Ax = b

⇒ (L+D + U)x = b

⇒ (L+D)x+ Ux = b

⇒ (L+D)x = −Ux+ b

⇒ x = (L+D)−1[−Ux+ b].

If x is our exact solution, then we can see from above that we must have x =

(L+D)−1[−Ux+ b]. Thus we have

M = (L+D) and N = −(U),

such that
M −N = L+D − (−U) = L+ U +D = A.

Thus our iterative matrix B is

B = (L+D)−1(−U),

and our b̃ is
b̃ = (L+D)−1b.

1.11 Remarks

We implemented both these solvers in MATLAB (see Appendix 4.1, 4.2, 4.3), and
compared rates of convergence for both. We find that it takes approximately twice
as many iterations in the Jacobi solver to achieve the same level of accuracy as the
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Gauss-Seidel solver. We experimented with error bounds for different powers of 10
and found this to consistently be the case. This is due to ||B|| = λmax, the largest
eigenvalue, being different in each case.In fact, the norm of the iterative matrix for
the Jacobi Solver (0.866) is the square root of the norm of the iterative matrix for
the Gauss-Seidel matrix (0.75) in our example from Figure 13. Examples of results
and eigenvalues for Example 13 for each method are included in Appendix 4.4 and
4.5.
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2 Part II: Models for Electric Vehicle Charger Use

The second part of this thesis broadly focuses on modeling the usage of electric
car chargers on the Bryn Mawr College campus based on current usage data. We
constructed a queuing simulation to get a rough idea of the number of electric
chargers that would be needed to adequately support usage if all non-bus College
vehicles were switched to their electric counterparts.

We find in Section 2.6 that switching all of Bryn Mawr’s non-bus vehicles to
their electric counterparts could be supported by just 6 Level 2 chargers, and that
the sixth charger would be available quite often, making it a possible candidate for
public use. Bryn Mawr College should move towards replacing their vehicle fleet, as
the present vehicles age out, with their equivalent electric vehicle alternatives, and
support them with an electric behicle charging network of 6 chargers.

2.1 Motivation

Climate change has been a pressing issue since the dawn of the industrial revolution,
but the urgency with which we must alter our behavior has been increasing over the
past few years. The Intergovernmental Panel on Climate Change (IPCC) published
a report in 2019 on the 1.5 ◦C increase in global temperature since pre-industrial
times on Climate Change [2019]. One of the primary methods of mitigation for this
climate change is reduction of greenhouse gas emissions. According to the EPA, 27%
of greenhouse gas emissions are due to transportation Agency [2020], and of that
27%, about 58% of these emissions are from passenger vehicles Agency [2019]. As a
result, a switch to electric vehicles, powered by electric motors rather than burning
fuel, is a key component of reducing carbon emissions on a large scale. Bryn Mawr
College has set a goal of reaching net zero carbon emissions by 2035 College [2021],
and a key part of reducing emissions is switching its fleet to electric vehicles. This
section aims to understand the number of chargers that would be needed on campus
to support switching the College’s non-bus vehicles to their electric counterparts. It
is important to note that all college-owned non-bus vehicles could be replaced with
electric versions.

2.2 Problem Background and Assumptions

Before we explain the design of our queuing simulation, we shall explain the back-
ground of the problem to provide some context for design choices.

We are assuming that each College car drives around a certain amount each day,
and depletes their battery each day based on the distance traveled. We assume that
once the car has used eighty percent of its usable battery capacity, it returns to a
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charger to fully recharge. If all chargers are occupied, the car enters the last spot in
the virtual queue and will not be used until it finishes charging.

We are assuming all chargers are Level 2 chargers, which means that they charge
cars at a constant rate of 7 kilowatts. For those vehicles for which we have mileage
data, we are using data from time since purchase to calculate daily use and charging
frequency. For vehicles without mileage data, we are making an estimate of their
mileage use by comparing with the data for other similar college-operated vehicles.

There are five categories of college vehicle. The electric counterparts, along with
the mileage con [2022] and usable battery capacity, are listed below:

Car Type
Range
(miles)

Usable Battery Capacity
(kWh)

Mileage
(miles/kWh, range

battery capacity)
Time to charge 80%

(hours, ⌈mileage
7

⌉)
8-person Minivan 350 111 3.15 16
Passenger Van 140 80 1.75 12

Cargo Van 126 68 1.85 10
SUV 220 71.4 3.08 11

Pickup Truck 230 98 2.35 14
High Roof 126 68 1.85 10

For each car with usage data, we divided the most recent odometer mileage
reading by the number of years since the car had been purchased in order to get
yearly use, then derived daily use from there. We divided the range for the model
by the daily distance traveled in order to calculate the frequency of charging. The
makes of these electric counterparts are listed in Appendix 4.6. Note that every
car had an electric alternative. The data for nineteen cars was available, and their
models, daily use, department, and charging frequency are listed below, in Table 1.
This data is from Bryn Mawr College Transportation con [2022]. For cars whose
usage data was not available (cars 20-40), we assumed a charging frequency of 15
days. This is because we based usage off of campus safety vehicle usage, since we
assumed facilities vehicles would be moving around with about the same frequency.

We looked at the usage of Level 2 chargers given this set of electric vehicles. We
assumed that if a car arrived when all chargers were already being used, they waited
in a virtual queue, during which the car was not used and was presumably parked
until a charger was available. We also wanted to consider that if a car was left to
charge overnight, it would not be retrievable until the morning, so we wanted to
introduce a period of “inactivity” for the charger during which vehicles could not be
retrieved from chargers and could not begin charging.
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Car Number Original Model Department Electric Model
Daily Use
(miles)

Frequency of Charging
(days)

Time to Fully Charge
(minutes)

1 Odyssey van
Transportation

(Rental)
Minivan 67.48 4.1 960

2 RAV4 Campus Safety SUV 21.49 8.2 660

3 RAV 4
Lantern Van

(Campus Safety)
SUV 18.51 9.5 660

4 E350 pass. van Athletics Passenger Van 11.40 9.8 720
5 E350 pass. van Athletics Passenger Van 10.25 10.9 720
6 E-350 pass. Van Athletics Passenger Van 9.99 11.2 720
7 RAV4 Campus Safety SUV 11.77 15.0 660
8 Suburban Geology SUV 11.18 15.7 660
9 Outback Biology SUV 9.15 19.2 660

10 1500 Cargo van
Dining Services

(Wyndham)
Cargo Van 4.65 21.7 600

11 Cargo Van Post Office Cargo Van 4.27 23.6 600

12 Handicap van
Transportation

(Rental)
Minivan 6.39 43.8 960

13 Caravan
Transportation

(Rental)
Minivan 5.75 48.7 960

14 Ram Van
Transportation

(Rental)
Minivan 5.71 49.0 960

15 Civic - CNG
Transportation

(Rental)
SUV 3.57 49.3 660

16 2500 CNG van
LITS

(Multimedia)
Cargo Van 1.92 52.6 600

17 Caravan
Transportation

(Rental)
Minivan 4.59 61.0 960

18 NVNV High Roof Dining Services High-roof 1.16 86.6 660

19 Sodena - 4 dr wagon
Transportation

(Bi-Co)
Minivan 1.69 165.5 960

20 F250 Pickup Truck Facilities Pickup Truck N/A 15 840

21 F250 pickup
Facilities

(Carpenters)
PICKUP N/A 15 840

22 E150 cargo van
Facilities

(Carpenters)
Cargo Van N/A 15 600

23 E150 cargo van
Facilities

(Electricians)
Cargo Van N/A 15 600

24 E150 cargo van
Facilities

(Electricians)
Cargo Van N/A 15 600

25 F350 pickup
Facilities
(Grounds)

Pickup Truck N/A 15 840

26 F250 pickup
Facilities
(Grounds)

Pickup Truck N/A 15 840

27 F350 utility body
Facilities
(HVAC)

Pickup Truck N/A 15 840

28 F250 Utility body
Facilities
(HVAC)

Pickup Truck N/A 15 840

29 Transit Conn. Van
Facilities
(HVAC)

Cargo Van N/A 15 600

30 Transit 150 LR cargo van
Facilities
(HVAC)

Cargo Van N/A 15 600

31 Transit
Facilities
(HVAC)

Cargo Van N/A 15 600

32 utility Caravan
Facilities

(Locksmith)
Cargo Van N/A 15 600

33 Closed utilitybody
Facilities

(Plumbing)
Pickup Truck N/A 15 840

34 F350 utility truck Facilities Pickup Truck N/A 15 840
35 E150 cargo van Facilities Cargo Van N/A 15 600
36 Suburban Geology SUV N/A 15 660
37 F-150 Housekeeping Pickup Truck N/A 15 840
38 F350 Stake body Housekeeping Pickup Truck N/A 15 840
39 Transit Van Housekeeping Cargo Van N/A 15 600

40 Odyssey van
Transportation

(Rental)
Minvan N/A 15 960

Table 1: Table of Car Data for Bryn Mawr College
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Figure 14: Overall Structure for System Behavior

2.3 Methodology and Development

We wanted our model to follow a basic overall structure. Cars would be used until
they reached 20% charge, at which point, they would head to a charging station
to charge. When they arrived at the charging station, they would plug in and
begin charging if a charger was available. If not, they would enter the queue and
only begin charging once they were at the front of the queue and a charger became
unoccupied. While in the queue, the car would not be used further. When a car
plugs in to charge, it charges fully. Once finished charging, it stops occupying the
charger and goes back to being used until it hits 20% charge again. When a car
leaves the charger, we plug in any car at the front of the queue immediately. This
process is illustrated in Figure 14.
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While this system is fairly simple at first glance, there are many moving parts.
Of note are three submethods: first, the way in which initial car arrival times at
stations are handled (Section 2.3.1), second, the way the queue is handled (Section
2.3.2), and third, the way we can implement rest hours for the chargers (Section
2.3.3). These submethods also tie into the overall structure of the simulation, which
deals with how we look at the passage of time in the simulation (Section 2.3.4) and
how cars move through the system in the simulation (Section 2.3.5).

2.3.1 Initial Arrival Generation Methods

There were multiple ways to handle the initial time of arrival for cars at the charge
station. The first way to generate initial arrival times for cars was to assume that
all cars began the simulation fully charged, and have their initial arrival time equal
the frequency of charging. However, in our Bryn Mawr case, cars 20-40 all have a
frequency of 15 days, meaning that on day 15 of the simulation, there would be a
huge overflow of cars. Furthermore, over time, the cars arrival times would space
out due to time spent waiting in the queue for a charger. Therefore, we decided
to forego waiting for the cars to stagger their arrival times as the simulation ran,
and instead staggered arrival times in the first place. The second way of generating
initial arrival times was to think of it as cars beginning the simulation with a random
amount of charge. That way, we generated initial arrival times randomly for each
car, with values ranging from 0 minutes into the simulation up to the frequency of
charging for that car. This second method was the one we ended up using for our
simulation. This submethod for generating initial arrival times is called the arrivals
function.

2.3.2 Queue Handling Methods

We also considered how the queuing system worked for this simulation. The first
method of queuing assumed that a car arriving at an occupied charging station knew
at what time the a charger would be soonest available, and would enter the queue
for that charger. Future cars arriving would know the availability time for the next-
soonest available charger and would enter the queue for that charger, and so on until
every charger had a car in the queue. However, future cars that arrived would have
no idea of how long the cars in the queue would take to finish charging, so instead
of entering the queue, would return to try to grab a spot some fixed amount of time
in the future. While this method worked, we found that it is instead feasible to set
up one virtual queue for all the chargers. Under this new system, there would just
be one queue for all the chargers, with unlimited capacity. Once all chargers were
occupied, if a new car arrived, it would enter the end of the queue and stop being
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used. As soon as a charger was available, whoever was at the front of the queue
would occupy that charger, leaving the queue and moving the next person in the
queue to the front. This system is possible in practice due to virtual queues being
in common usage in the world; one can easily set up a system to keep track of a
queue and notify a driver as soon as a charging spot opens up. This second method
is the queuing method we utilized for our final simulation.

2.3.3 Implementation of Nighttime Hours

Now understanding how the queuing system worked for our simulation, we had to
consider the practicality of some of its aspects. Suppose a spot opened up at 3 AM?
It is unreasonable to assume that a driver would wake up to go and plug in the car
to charge at that hour. Similarly, suppose a car finished charging at 3 AM? Again,
it is unreasonable to assume that a driver would wake up to unplug the car from the
charger. For this reason, we wished to introduce hours of inactivity, or “nighttime
hours,” for the simulation. For a stretch of time each day, cars would not be able to
arrive at the charger and would not be able to leave the charger due to personnel not
being available to perform those tasks during that time. The exact algorithm used
to calculate whether or not it was nighttime in the simulation, isnight, is discussed
in Section 2.4.

2.3.4 Event- vs. Time-Driven Simulations

Moving onto broader, structure-based questions, we consider the question of how
the simulation moves through time. In our simulation, we are looking at how cars
pass through the system and charge over time. There are two approaches to under-
stand how the simulation handles this. The first approach is called an event-driven
simulation, in which our simulation only moves forward when events occur. For
example, the first version of our simulation began with this event-driven structure
based on the ship harbor queuing model from A First Course in Mathematical Mod-
eling Giordano et al. [2015]. Instead of iterating over time, the simulation iterated
over the number of cars charged over the run time of the simulation. A flowchart
of this simulation is depicted in Figure 15. The simulation moves forward by con-
sidering only the arrival time of the next car – time itself is not tracked on its own.
For example, the first car arrival time is generated, and then the arrival time of the
next car is generated based on the arrival time of the first car. Then we look at the
difference between the arrival time of the second car and the time at which the first
car finishes charging, and determine whether the second car needs to wait or not.
Once the second car’s charge finish time is calculated, we generate the third car’s
arrival time based on the arrival time of the second car, and repeat until we have run
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through the number of cars we wanted to consider in our simulation. At first glance,
a number of issues crop up with this event-driven simulation. Rather than looking
at the behavior of our system over a period of time, we follow a certain number of
cars and see what happens over that time. Furthermore, since arrival times are so
closely linked between consecutive cars, we have a much “flatter” simulation, with
less room to maneuver with staggered arrival times. Furthermore, as we will discuss
in Section 2.3.5, this method makes it impossible to keep track of specific instances
of cars after they leave their charger.

For this reason, we switched to a time-driven structure for our final simulation,
in which, as the name suggests, the simulation increments over time rather than over
car arrivals. In this case, the simulation begins at time zero and runs for a fixed
length of time. At each minute, the system checks if a car has arrived or finished
charging, and handles the system accordingly, then increases time by 1. At the next
time unit, it does the same, and so on until the simulation has run through the
desired length of time.

2.3.5 Open- vs. Closed-Network Queuing Simulations

Finally, we wanted to consider how cars moved through the system outlined in
Figure 14. There are two ways to approach how cars move through the system. The
first method is an open-network queuing system, in which a car is created, moves
through the process of entering a queue and charging, and once finished charging,
leaves the system and cannot return to charge again. The process illustrated in
Figure 15 is an example of an open-network queuing system. Each car is generated,
moves through the system, then is effectively destroyed. However, for our specific
case we could not have this happen. We intended to explore the usage behavior of
a specific 40-car fleet of vehicles, and in order to do so, would need to have cars
preserved as they moved through the system. For that reason, we switched to a
closed-network queuing system.

In a closed-network queuing system, as the name implies, the cars moving
through the system are a specific set of cars. In our case, there were a set of
40 cars moving through the processes of being used and depleting charge, arriving
at the chargers, waiting in queue if necessary, then charging and returning back to
being used once fully charged.

As a result, the final simulation algorithm was a Time-Driven Closed-Network
Queuing Simulation. The final simulation algorithm is included, with comments,
in Appendix 4.7. A flowchart of this final simulation is depicted in Figure 17, and
Section 2.4 will discuss the full algorithm in more detail.
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Figure 15: Event-Driven Open Network Queuing Simulation
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2.4 In-Depth Explanation of Final Simulation Algorithm

As stated before, our final simulation was a time-driven closed network queuing
simulation, referred to as a TDCN queuing simulation. Rather than having time
move forward as determined by arrival times, at each unit of time, we check if
an event occurs, then increment time by one, hence the term “time-driven”. This
simulation relied on four nested functions, each of which will be described below:

isnight function: This function informs us if a given time is during the hours of
inactivity for the chargers.

Input: t (timestamp in minutes), n (number of hours of inactivity)
Output: 1 if t is within the period of inactivity, 0 if not
Step 1: Calculate nextstart, the timestamp of start of active period for next
day (in minutes).

nextstart = ⌈ t
24·60⌉ · 24 · 60

Step 2: Calculate time (in minutes) until start of active period for next day.
timetillnext = nextstart − t

Step 3: If the time till the start of the next active period is less than n hours,
but more than 0 minutes, we are in the inactive period.

if timetillnext < n · 60 AND timetillnext > 0:
return 1

Step 4: Else, we are in an active period.
else return 0

generate_car function: This function generates the timestamp (in minutes) at
which a given car will leave the charger.

Input: t (timestamp in minutes), car_name (identity of car being charged), n
(number of hours of inactivity)
Output: timestamp in minutes at which car is fully charged and can be retrieved
from the charger
Step 1: Generate charge finish time for car based on car name, without
considering whether car can be retrieved at that time.

chargetime = t + car_profile[car_name]
Step 2: Check if car can be retrieved at that time.

inactive = isnight(chargetime, n)
Step 3: If car cannot be retrieved then, change retrieval time to earliest possible
time.

if inactive = 1:
return ⌈ t

24·60⌉ · 24 · 60
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Step 4: If car can be retrieved then, return that time.
else return chargetime

The remaining function is the charger selection function, select_charger, which
is described in Figure 16. The function first calls the time of arrival of the car. If the
car would arrive during nighttime, it is instead supposed to arrive at the beginning
of the next day, so the function returns a -1, effectively adding the car to the end
of the queue (the queue is checked at the start of each day so that cars that would
start charging first thing in the morning can do so). If the car would arrive during
daytime, we check each charger to see if it is occupied. The value of the first
unoccupied charger is returned. If no charger is unoccupied, the function returns
-1, and so the car is added to the end of the queue.

Figure 16: Charger Selection Function for TDCN Queuing Simulation
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These functions combine to form the overall simulation. The initial arrival
times of all cars are generated (arrivals), and we find the soonest arrival time,
time_pointer, of a car by taking the min of all arrival times. Then we set the time
to equal 0 and run the following loop while time is less than timespan, the length
of time for which the simulation runs. At each time unit, four processes are run in
order.

1. (Orange) We check whether it is the start of a new day. If it is and any cars
would have arrived the previous night, they instead arrive at this point. Cars
that arrive at night go into the queue based on their order of arrival during
the night. We check the queue to see which cars arrived the previous night
and occupy all chargers possible (select_charger, generate_car), removing
these cars from the queue. As soon as no chargers are available, we move to
the next process.

2. (Green) We check all chargers to see if any cars just finished charging. If
any have, we remove them from the charger and generate their next arrival
time based on their charging frequency. Once this charger is unoccupied,
we check if there are any cars in the queue. If there are, the frontmost car
occupies this charger and its finish time is generated based on which model
it is (generate_car). Note that the finish time of a car factors in whether
it finishes charging at night or during the day. This car is removed from the
queue. After we have checked to see if all fully-charged cars have been dealt
with, we move on to the next process.

3. (Purple) Finally, we check if any cars have arrived by checking if the current
time is greater than time_pointer, which was the min of all arrival times. If the
time is greater than time_pointer, we check which car is arriving and select a
charger or enter the queue (select_charger) based on availability and time of
day. If we occupy a charger, we generate finish charge time (generate_car).
As soon as a car arrives, its next arrival time is set to the simulation time
length + 1 so that it is not the minimum arrival time value. This is so that we
avoid a case where a car is slated to arrive while it is still charging; generally,
setting next arrival time to any very large value would work. At this point,
we change time_pointer to equal the next soonest arrival time, determined by
taking the min of all arrival times.

4. Increase time by 1.

We run Steps 1-4 until the simulation has run through the desired length of time.
This process is detailed in Figure 17.
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Figure 17: Time-Driven Closed-Network Queuing Simulation Flowchart

42



2.5 Debugging

We used three visual representations of our results to debug the simulation.
Our first visual, Figure 18, displayed activity at each of the chargers over time.

At each minute in the simulation, we plotted whether the charger was occupied,
and if it was, which car was occupying the charger. That way we were able to
check when each car began and finished charging. When we incorporated inactivity
periods for the chargers, we made sure that no car finished charging during the
periods of inactivity. We were also able to verify that no car was charging in two
chargers at once, and were able to verify that if a car was charging, the charger was
not also marked as being unoccupied. In Figure 18,the blue lines represent whether
it is nighttime or not. If the blue line is nonzero, it is nighttime, and if the blue line
is zero, it is daytime. If the other lines are positive, their values correspond to which
car is charging at that time. For example, if a line has value X with X > 0, car X

is being charged. If their values are negative, then that charger is unoccupied. For
example, if a line has value Y with Y < 0, charger Y is unoccupied.

Figure 18: Plot of Charger Activity Over Time

Our second visual, Figure 19, graphed, for each car in the queue, the time spent
waiting in the queue versus the time since the start of the simulation. We plotted
this superimposed with the length of the queue at each minute. This allowed us to
verify that the queue portion of our algorithm was working correctly. We can use
this visual to note that for these parameters, all waiting time occurred during the
nighttime, indicating that there was no charger back up outside of night hours.
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Figure 19: Plot of Minutes Waited Since Arrival

Our third visual, Figure 20, graphed, for each charger, the amount of time left
until the charger would be unoccupied. This allowed us to make sure that cars
finished charging fully before they left, and that charger selection prioritization was
working systematically, as intended.

Figure 20: Plot of Minutes Left Until Charger Unoccupied

The main issues we ran into while debugging had to do with very small coding
errors. For example, defining something based on a variable created within a func-
tion, or missing a set of parentheses when defining a range of values. These tools
allowed us to catch those errors very quickly.

2.6 Results

We now examine our 40-car fleet’s usage patterns (Section 2.2), based on the usage
detailed in Table 1. We compare average and maximum wait times (Table 2),
along with usage amounts by charger (Table 3), for 10, 6, 5, and 4 charger systems
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with nighttime lengths of 0, 8, and 12 hours. We run each simulation over six
months. Number of cars charged over this length of time does not vary much
with changing parameters, so we did not post these results. Because we are using
randomly-generated initial arrival times, we posted the results for each combination
of parameters averaged over 20 runs.

0 hours of nighttime 8 hours of nighttime 12 hours of nighttime
10 chargers (0,0) (36.8, 473.7) (65.3, 679.5)
6 chargers (0.2, 37.1) (49.1, 483.7) (72.0, 700.9)
5 chargers (0.9, 186.5) (48.5, 559.4) (71.6, 797.0)
4 chargers (5.4, 346.5) (52.3, 676.3) (89.2, 1018.8)

Table 2: Average Wait Time, Maximum Wait Time (minutes)
Over 20 Six-Month Runs of TDCN Queuing Simulation

0 hours of nighttime 8 hours of nighttime 12 hours of nighttime

10 chargers

55.75%
37.70%
20.66%
8.52%
2.73%
0.64%
0.14%
0.00%
0.00%
0.00%

60.60%
42.58%
24.85%
11.20%
4.01%
0.88%
0.14%
0.02%
0.00%
0.00%

67.76%
48.35%
29.61%
15.67%
6.60%
2.07%
0.68%
0.16%
0.04%
0.00%

6 chargers

56.48%
37.76%
20.51%
8.16%
2.47%
0.89%

59.05%
41.97%
24.53%
11.58%
4.24%
1.27%

68.22%
47.92%
30.24%
15.03%
6.50%
2.15%

5 chargers

56.56%
37.95%
20.73%
8.09%
2.48%

58.88%
42.40%
25.33%
11.66%
4.14%

68.05%
48.63%
30.98%
15.83%
6.37%

4 chargers

57.42%
38.56%
21.42%
8.75%

61.25%
44.13%
25.68%
11.43%

69.03%
50.31%
32.45%
17.37%

Table 3: Average Percent of Time Each Charger Was Used Over 20 Six-Month
Runs of TDCN Queuing Simulation
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For 10 chargers, we find that for all tested nighttime lengths, only 6 out of 10
of the chargers are used for more than 1 percent of the total time. As a result, we
explored how wait times and usage amounts looked for 6, 5, and 4 chargers. We
find that there is a tipping point between 5 and 4 chargers, where the average wait
time for a 0-hour nighttime increases from 0.9 minutes to 5.4 minutes, blowing up
by a factor of six. This is indicative of a major pileup problem between 5 and 4
chargers. Furthermore, looking at the 12-hour case for 5 and 4 chargers, we see that
the maximum wait time increases from 797.0 minutes to 1018.8 minutes, an increase
of around 3.5 hours, when previous wait times increased by only around 1.5 hours.
This tells us that 4 chargers is far too few to support the College’s needs. However,
we see relatively small differences between 6 and 5 chargers in the 8 and 12 hour
nighttime length scenarios, meaning that around 5 or 6 chargers may be suitable to
meet the College’s needs. We also want to note that for 10 and 6 charger systems,
the maximum wait time closely matches up with the rest length, and so the wait
time is likely due to that. We would want to discuss more with the drivers of College
vehicles to get a better idea of what wait times are acceptable.

2.7 Questions for Further Exploration

There are some further refinements we would like to make to the simulation, outlined
below:

1. This model could be refined further by taking into account consistency of
usage. For example, an athletics rental vehicle would be used sparsely, but
would be used for very long trips, whereas the post office van would be used
consistently for small distances daily.

2. Introduce level 3 chargers, which charge rapidly from 20% to 80% of battery
capacity, as another charger option. Also introduce a method, perhaps linked
with priority, of choosing which charger to use when both are available. This
way highly-used campus safety vans, for example, have priority to use faster
chargers so that they may be used for long stretches of each day.

3. Make car day-to-day usage have a partially random element, and occur in a
range of values rather than a fixed value.
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3 Final Recommendation

This work clearly shows us that under current usage assumptions, switching all of
Bryn Mawr’s non-bus vehicles to their electric counterparts could be supported by
just 6 Level 2 chargers, and that the sixth charger would be available quite often,
making it a possible candidate for public use.

Bryn Mawr College should move towards replacing their vehicle fleet, as the
present vehicles age out, with their equivalent electric vehicle alternatives, and sup-
port them with an electric behicle charging network of 6 chargers.

47



4 Appendix

4.1 Coefficient Matrix for System of Equations

# finding r and initializing coefficient and constant

vectors

r = length(bT);

A = zeros(r^2,r^2);

b = zeros(r^2,1);

# "center" head equation generation

for i = 0:(r-3)

for j = ((i*r)+(r+2)):((i*r)+(2*r-1))

A(j,j-r) = -1; # top

A(j,j-1) = -1; # left

A(j,j) = 4; # self

A(j,j+1) = -1; # right

A(j,j+r) = -1; # bottom

endfor

endfor

# top boundary head equation generation , excluding

corners

for j = 2:(r-1)

b(j) = bT(j);

A(j,j-1) = -1; # left

A(j,j) = 4; # self

A(j,j+1) = -1; # right

A(j,j+r) = -1; # bottom

endfor

# bottom boundary head equation generation , excluding

corners

for j = (r^2-r+2):(r^2-1)

b(j) = bB(j-(r^2-r+2) +2);

A(j,j-r) = -1; # top

A(j,j-1) = -1; # left

A(j,j) = 4; # self

A(j,j+1) = -1; # right
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endfor

# left boundary head equation generation , excluding

corners

for j = (1+r):r:(r^2-2*r+1)

b(j) = bL(((j-1)/r)+1);

A(j,j-r) = -1; # top

A(j,j) = 4; # self

A(j,j+1) = -1; # right

A(j,j+r) = -1; # bottom

endfor

# right boundary head equation generation , excluding

corners

for j = (2*r):r:(r^2-r)

b(j) = bR(j/r);

A(j,j-r) = -1; # top

A(j,j-1) = -1; # left

A(j,j) = 4; # self

A(j,j+r) = -1; # bottom

endfor

# top left corner head equation generation

b(1) = bT(1)+bL(1);

A(1,1) = 4; # self

A(1,2) = -1; # right

A(1,1+r) = -1; # bottom

# top right corner head equation generation

b(r) = bT(r)+bR(1);

A(r,r) = 4; # self

A(r,r-1) = -1; # left

A(r,2*r) = -1; # bottom

# bottom left corner head equation generation

b(r^2-r+1) = bL(r)+bB(1);

A(r^2-r+1,r^2-r+1) = 4; # self

A(r^2-r+1,r^2-r+1-r) = -1; # top

A(r^2-r+1,r^2-r+2) = -1; # right
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# bottom left corner head equation generation

b(r^2) = bR(r)+bB(r);

A(r^2,r^2) = 4; # self

A(r^2,r^2-r) = -1; # top

A(r^2,r^2-1) = -1; # left
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4.2 Solver and Analysis for Jacobi Method

clc

format short

function heads = JacobiVals(bT,bB ,bL,bR ,errbound)

# computing exact values

A;

b;

headval = A\b;

# calculating iteration matrix for Jacobi B

# & displaying its eigenvalues

B = inv(diag(diag(A)))*-1*(tril(A,-1)+triu(A,1));

eigenB = eig(B);

maxeigenB = max(abs(eigenB));

# for loop for examining convergence of Jacobi method

btilde = inv(diag(diag(A)))*b;

errval = 1;

erratio = [];

errvec = [errval ];

iterations = 0;

approxhead = zeros(r^2,1);

while errval > errbound

approxhead = B*approxhead + btilde;

iterations = iterations + 1;

errval = norm(approxhead -headval);

errvec = [errvec errval ];

erratio = [erratio errval/errvec(iterations)];

endwhile

# compare ratio of errors vs max magnitude eigenvalue

of B

erratio = erratio (2:end);

hold on

plot (1: length(erratio),erratio)

plot (1: length(erratio), maxeigenB*ones(1,length(erratio

)))
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legend(’Ratio␣of␣error␣over␣time’,’Maximum␣magnitude␣

eigenvalue␣of␣B’)

hold off

# OPTIONAL: displaying exact head values

# (can be replaced w/ approximate head values) in a

grid

heads = zeros(r,r);

for i = 1:r

for j = 1:r

plusval = mod(j,r);

if plusval == 0

plusval = 5;

endif

heads(i,j) = headval (((i-1)*r)+plusval);

endfor

endfor

disp(["The␣total␣number␣of␣iterations␣needed␣to␣get␣to␣

an␣error␣of␣",

num2str(errbound),"␣from␣an␣initial␣guess␣of␣all␣zeros␣

was␣",

num2str(iterations),"."])

endfunction

bound_top = [260 280 300 315 340];

bound_bottom = [210 225 245 270 300];

bound_left = [230 220 215 210 205];

bound_right = [360 355 350 345 340];

actualval = JacobiVals(bound_top ,bound_bottom ,bound_left ,

bound_right ,.001)
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4.3 Solver and Analysis for Gauss-Seidel Method

clc

format short

function heads = GaussSeidelVals(bT,bB,bL,bR,errbound)

# computing exact values

A;

b;

headval = A\b;

# calculating iteration matrix for Gauss -Seidel B &

displaying its eigenvalues

B = inv((tril(A,-1)+diag(diag(A))))*-1*triu(A,1);

eigenB = eig(B);

maxeigenB = max(abs(eigenB));

eig(B);

B

# for loop for examining convergence of Gauss -Seidel

method

btilde = inv((tril(A,-1)+diag(diag(A))))*b;

errval = 1;

erratio = [];

errvec = [errval ];

iterations = 0;

approxhead = zeros(r^2,1);

while errval > errbound

approxhead = B*approxhead + btilde;

iterations = iterations + 1;

errval = norm(approxhead -headval);

errvec = [errvec errval ];

erratio = [erratio errval/errvec(iterations)];

endwhile

# compare ratio of errors vs max magnitude eigenvalue

of B

erratio = erratio (2:end);

hold on

plot (1: length(erratio),erratio)
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plot (1: length(erratio), maxeigenB*ones(1,length(erratio

)))

legend(’Ratio␣of␣error␣over␣time’,’Maximum␣magnitude␣

eigenvalue␣of␣B’)

hold off

# OPTIONAL: displaying exact head values

# (can be replaced w/ approximate head values) in a

grid

heads = zeros(r,r);

for i = 1:r

for j = 1:r

plusval = mod(j,r);

if plusval == 0

plusval = 5;

endif

heads(i,j) = headval (((i-1)*r)+plusval);

endfor

endfor

disp(["The␣total␣number␣of␣iterations␣needed␣to␣get␣to␣

an␣error␣of␣",

num2str(errbound),"␣from␣an␣initial␣guess␣of␣all␣zeros␣

was␣",

num2str(iterations),"."])

endfunction

bound_top = [260 280 300 315 340];

bound_bottom = [210 225 245 270 300];

bound_left = [230 220 215 210 205];

bound_right = [360 355 350 345 340];

actualval = GaussSeidelVals(bound_top ,bound_bottom ,

bound_left ,bound_right ,.01)
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4.4 Results for Jacobi Solver for 25-well Example

head_values =

251.21 272.03 292.62 312.78 335.92

242.82 264.29 285.67 307.57 330.88

235.77 256.63 278.22 300.96 325.05

228.62 248.26 269.61 293.00 318.35

220.45 238.17 258.96 283.08 310.36

max Btilde eigenvalue =

0.8660

Number of iterations to get to .01 total error from initial guess of

all zeros =

82

4.5 Results for Gauss-Seidel Solver for 25-well Example

head_values =

251.21 272.03 292.62 312.78 335.92

242.82 264.29 285.67 307.57 330.88

235.77 256.63 278.22 300.96 325.05

228.62 248.26 269.61 293.00 318.35

220.45 238.17 258.96 283.08 310.36

max Btilde eigenvalue =

0.75

Number of iterations to get to .01 total error from initial guess of

all zeros =

42

4.6 Electric Car Alternatives for Bryn Mawr Vehicles

Car Type Alternative Model Link to Specs

8-person Minivan
Volkswagen

ID Buzz
topelectricsuv.com/news/volkswagen/vw-id-buzz-update/

Passenger Van
Lightning Electric

Passenger Van
lightningemotors.com/lightningelectric-ford-transit-shuttle/

Cargo Van
Ford

2022 Cargo Van
ford.com/commercial-trucks/e-transit/models/cargo-van

SUV
Subaru
Solterra

topelectricsuv.com/news/subaru/subaru-electric-car-fresh-details

Pickup Truck
Ford

F150 Lightning
ford.com/trucks/f150/f150-lightning/

High Roof
Ford

2022 Cargo Van
(different height from Cargo Van)

ford.com/commercial-trucks/e-transit/models/cargo-van
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4.7 Time-Driven Closed Network Queuing Simulation Code

# SIMULATION PARAMETERS

timespan = 6*28*24*60 # length of time for which

simulation runs (minutes)

num_chargers = 10 # number of chargers

restlength = 8 # number of hours chargers are "inactive"

num_cars = 40

weekvec= seq(1,( timespan/(24*60)),by=7)

# NESTED FUNCTIONS

isnight_function = function(ct,n) {

ns = ceiling(ct/(24*60))*24*60

ttn = ns - ct

if (ttn < n*60 && ttn > 0){

return (1)

} else{

return (0)

}

}

arrivalsvector = function () { # generate vector of car

arrivals

carnames = c(1: num_cars) # number/’name ’ of car

frequency_charge = c(ENTER VALUES FROM TABLE) #

frequency of charge (minutes)

charging_length = c(ENTER VALUES FROM TABLE) # time

needed to fully charge (minutes)

for (i in 1:num_cars){

arrival_timestamp[i] = runif(1,0, frequency_charge[i])

# randomly generate first arrival time

}

# arrival_timestamp = frequency_charge # time of first

arrival from start of clock (in minutes) -- this

changes as the simulation runs

arrivals = array(c(carnames ,frequency_charge ,charging_

length ,arrival_timestamp),dim=c(num_cars ,4)) #

compile into one array
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return(arrivals)

}

generate_car = function(car_name ,arrvec ,time) { #

generate car profile/car charge finish time

charge_time = time + arrvec[car_name ,3] # pull time to

fully charge from vector of charging times by car

# check if in active hours -- if not , adjust finish

time

nextstart = ceiling(charge_time/(24*60))*24*60 #

calculate time of start of next day (when finished

charging)

timetillnext = nextstart - charge_time # calculate time

until start of next day

if (timetillnext <= restlength*60-1) { # if less than

restlength hours left (i.e. if chargers are inactive

)

return(nextstart) # then we add the car to the queue

}

return(charge_time)

}

select_charger = function(chargvec ,time) { # select which

charger for a car to use , if available

# check if in arrival hours -- if not , add to queue

nextstart = ceiling(time/(24*60))*24*60 # calculate

time of start of next day

timetillnext = nextstart - time # calculate time until

start of next day

if (timetillnext <= restlength*60-1 && timetillnext >0)

{ # if less than restlength hours left (i.e. if

chargers are inactive)

return (-1) # then we add the car to the queue

}

# else if we are within arrival hours , check for
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available chargers

for (i in 1:dim(chargvec)[1]) { # go through list of

chargers

if (chargvec[i,1] == 0) { # if unoccupied

return(i) # select charger

}

}

return (-1) # else return -1 for no chargers available

}

# END OF FUNCTIONS

# START CLOCK

t = 0 # start clock at time = 0

# GENERATE ARRIVAL TIMES

arrivals = arrivalsvector () # generate car arrival times

# arrivals = arrivalscopy

# INITIALIZE POINTERS and QUEUES

present_car_arrival = arrivals[which.min(arrivals [,4]) ,1]

# initialize name of current car that has arrived

arrivals_time_pointer = arrivals[present_car_arrival ,4] #

initialize time pointer for car arrivals (time after

which to check for arrivals)

arrival_number = present_car_arrival # initialize "

arrival index pointer" = which arrival (in terms of

ordering) we are considering next

chargers = array(c(numeric(num_chargers),numeric(num_

chargers)),dim=c(num_chargers ,2)) # initialize charger

availability (and which car is at which charger)

charger_queue = array(c(numeric (1000) ,numeric (1000)),dim=

c(1000 ,2)) # initialize queue for chargers

charger_queue_pointer = 1 # initialize queue pointer at 1

st entry in queue

charger_queue_length = 0 # initialize value of number of

cars waiting in queue

first_car_in_queue = 0 # initialize name of first car in
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queue

isnight = numeric(timespan) # initialize night switch

nextstart = 0

timetillnext = 0

# INITIALIZE OUTPUTS

CHARGETIME = numeric(num_chargers) # total time chargers

are in use

cars_served = 0 # total number of cars charged

wait_time = 0 # average wait time per car

carplot = array(numeric(timespan),dim=c(timespan ,num_

chargers)) # array to store which car is in which

charger at time t

queueplot = numeric(timespan) # array to store number of

cars in queue at time t

waitplot = array(numeric(timespan),dim=c(timespan ,num_

cars)) # array to store how long cars are waiting

chargerplot = array(numeric(timespan),dim=c(timespan ,num_

chargers)) # array to store how long until chargers

are free next

queuestartplot = numeric(timespan)

# SIMULATION START

while (t < timespan) { # while simulation is running

nextstart = ceiling(t/(24*60))*24*60 # calculate time

of start of next day

timetillnext = nextstart - t # calculate time until

start of next day

if (timetillnext <= restlength*60-1 && timetillnext >0)

{ # if less than restlength hours left (i.e. if

chargers are inactive)

isnight[t] = 1 # then we are in a period of

inactivity

}

if (timetillnext == 0) { # if it is the start of a new
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day

if (charger_queue_length > 0) { # if there is a queue

for (i in charger_queue_pointer :( charger_queue_

pointer+charger_queue_length -1)) { # for each

car in the queue

available_charger = select_charger(chargers ,t)

if (available_charger != -1) { # if a charger is

available

chargers[available_charger ,1] = generate_car(

charger_queue[i,1],arrivals ,t) # occupy the

free charger

chargers[available_charger ,2] = charger_queue[i

,1] # note which car is occupying the

charger

wait_time = wait_time + t - charger_queue[i,2]

# calculate wait time based on current time

minus time car started charging

charger_queue_pointer = charger_queue_pointer +

1 # consider next spot in queue and later (

i.e. "remove" from queue)

charger_queue_length = charger_queue_length - 1

# reduce queue length by 1

CHARGETIME[available_charger] = CHARGETIME[

available_charger] + chargers[available_

charger ,1] - t # add to total time charger

is in use

}

}

}

}

for (i in 1:num_chargers) { # check if any cars are

done charging

if (chargers[i,1] != 0) { # among chargers that are

occupied

if (t >= chargers[i,1]){ # if any cars are done

charging

present_car_arrival = chargers[i,2] # focus on

car that just finished charging
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chargers[i,1] = 0 # make charger available

arrivals[present_car_arrival ,4] = t + arrivals[

present_car_arrival ,2] # calculate time of

next needed charge

chargers[i,2] = 0 # clear out car in that charger

slot

arrival_number = arrivals[which.min(arrivals [,4])

,1] # move arrival index pointer to next car

arrivals_time_pointer = arrivals[arrival_number

,4] # move arrival timestamp pointer to next

car ’s arrival

cars_served = cars_served + 1

if (charger_queue_length > 0) { # if there is a

queue

first_car_in_queue = charger_queue[charger_

queue_pointer ,1] # note down name of first

car in queue

chargers[i,1] = generate_car(first_car_in_queue

,arrivals ,t) # occupy charger until specific

time t, based on name of current car

chargers[i,2] = first_car_in_queue # note which

car is in this charger

wait_time = wait_time + t - charger_queue[

charger_queue_pointer ,2] # since a car

begins charging from the queue , add to total

wait time by taking difference of arrival

time and current time (time waiting in line

before charging)

charger_queue_pointer = charger_queue_pointer +

1 # consider next spot in queue and later (

i.e. "remove" from queue)

charger_queue_length = charger_queue_length - 1

# reduce queue length by 1

CHARGETIME[i] = CHARGETIME[i] + chargers[i,1] -

t # add to total time charger is in use

}

}

}
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}

if (t >= arrivals_time_pointer) { # check if a car is

arriving

present_car_arrival = arrival_number # set current

car being considered to the car that just arrived

available_charger = select_charger(chargers ,t) #

select a charger for the car

if (available_charger != -1) { # if a charger is

available

chargers[available_charger ,1] = generate_car(

present_car_arrival ,arrivals ,t) # generate time

of finishing charging (based on car that will

begin charging), from start of clock , occupy

available charger

chargers[available_charger ,2] = present_car_arrival

CHARGETIME[available_charger] = CHARGETIME[

available_charger] + chargers[available_charger]

- t # add to total time charger is in use

}

if (available_charger == -1) { # if no chargers are

available

charger_queue[charger_queue_pointer+charger_queue_

length ,1] = present_car_arrival # add to end of

queue the name of car that just arrived

charger_queue[charger_queue_pointer+charger_queue_

length ,2] = t # note arrival time of car in

queue

charger_queue_length = charger_queue_length + 1

}

arrivals[present_car_arrival ,4] = timespan + 1 #

while charging , remove this car from consideration

for arrival for charging

arrival_number = arrivals[which.min(arrivals [,4]) ,1]

# initialize name of current car that has arrived

arrivals_time_pointer = arrivals[arrival_number ,4] #
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now that car has arrived and been sorted , move

arrival timestamp pointer to next car ’s arrival

}

if (charger_queue_length > 0){

for (i in charger_queue_pointer :( charger_queue_

pointer+charger_queue_length -1)) { # for each car

in the queue

waitplot[t,charger_queue[i ,1]]=t-charger_queue[i,2]

# plot time waited so far

}

}

queuestartplot[t] = charger_queue_pointer

for (i in 1:num_chargers) {

carplot[t,i] = chargers[i,2] # for all chargers note

which car is charging

if (chargers[i,2] == 0) { # if a charger isnt being

used

carplot[t,i] = -i # note that it isnt being used

}

chargerplot[t,i] = max(0,chargers[i,1]-t)

}

queueplot[t] = charger_queue_length

t = t+1 # a minute passes

}

for (i in 1:num_chargers) { # once clock is done running ,

calculate % of time each charger spent in use

CHARGETIME[i] = CHARGETIME[i]/timespan

}

wait_time = wait_time/cars_served

print(CHARGETIME)

print(cars_served)

print(wait_time)

print(max(waitplot))
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4.8 Results With Figures for Various Parameters

Figure 21: Usage Pattern for 10 Chargers with 0 Hours of Inactivity Daily

Percent of time charger was in use

55.28%
39.31%
18.20%
7.71%
2.65%
0.09%
0.00%
0.00%
0.00%
0.00%

Total number of cars charged 404
Average wait time per car (minutes) 0
Maximum wait time (minutes) 0

Table 4: Usage Data for 10 Chargers with 8 Hours of Inactivity Daily
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Figure 22: Usage Pattern for 10 Chargers with 8 Hours of Inactivity Daily

Percent of time charger was in use

63.19%
44.81%
25.33%
11.11%
01.26%
0.00%
0.00%
0.00%
0.00%
0.00%

Total number of cars charged 405
Average wait time per car (minutes) 22.6
Maximum wait time (minutes) 476

Table 5: Usage Data for 10 Chargers with 8 Hours of Inactivity Daily
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Figure 23: Usage Pattern for 10 Chargers with 12 Hours of Inactivity Daily

Percent of time charger was in use

68.28%
47.31%
29.35%
14.49%
8.16%
1.86%
0.00%
0.00%
0.00%
0.00%

Total number of cars charged 400
Average wait time per car (minutes) 65.55
Maximum wait time (minutes) 706

Table 6: Usage Data for 10 Chargers with 12 Hours of Inactivity Daily
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Figure 24: Usage Pattern for 6 Chargers with 0 Hours of Inactivity Daily

Percent of time charger was in use

58.90%
40.38%
16.27%
6.47%
2.41%
0.00%

Total number of cars charged 407
Average wait time per car (minutes) 0
Maximum wait time (minutes) 0

Table 7: Usage Data for 6 Chargers with 0 Hours of Inactivity Daily
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Figure 25: Usage Pattern for 6 Chargers with 8 Hours of Inactivity Daily

Percent of time charger was in use

62.98%
41.08%
23.46%
10.91%
5.47%
1.38%

Total number of cars charged 406
Average wait time per car (minutes) 26.8
Maximum wait time (minutes) 467

Table 8: Usage Data for 6 Chargers with 8 Hours of Inactivity Daily
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Figure 26: Usage Pattern for 6 Chargers with 12 Hours of Inactivity Daily

Percent of time charger was in use

70.91%
49.30%
27.75%
15.67%
6.53%
2.84%

Total number of cars charged 400
Average wait time per car (minutes) 51.78
Maximum wait time (minutes) 718

Table 9: Usage Data for 6 Chargers with 12 Hours of Inactivity Daily
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