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Abstract

The unknotting number is a classical invariant for smooth knots, [1]. More
recently, the concept of knot ancestry has been defined and explored, [3]. In
my research, I explore how these concepts can be adapted to study trans-
verse knots, which are smooth knots that satisfy an additional geometric
condition imposed by a contact structure.

1. Introduction

Smooth knots are well-studied objects in topology. A smooth knot is a closed curve in
3-dimensional space that does not intersect itself anywhere. Figure 1 shows a diagram of the
unknot and a diagram of the positive trefoil knot.

Figure 1. A diagram of the unknot and a diagram of the positive trefoil knot.

Two knots are equivalent if one can be deformed to the other. It is well-known that
two diagrams represent the same smooth knot if and only if their diagrams are equivalent
through Reidemeister moves. On the other hand, to show that two knots are different, we
need to construct an invariant that can distinguish them. For example, tricolorability shows
that the trefoil is different from the unknot. Unknotting number is another invariant: it is
known that every smooth knot diagram can be converted to the diagram of the unknot by
changing crossings. This is used to define the smooth unknotting number, which measures
the minimal number of times a knot must cross through itself in order to become the unknot.

This thesis will focus on transverse knots, which are smooth knots that satisfy an ad-
ditional geometric condition imposed by a contact structure. Figure 2 shows transverse
representatives of the unknot.

Figure 2. Transverse representatives of the unknot.

Briefly, a contact structure is given by a field of planes on R3, and transverse knots will
be oriented and have tangent vectors that are always transverse to these planes. More
background on contact structures can be found in Section 3. We observe transverse knots
in their front diagrams, which are shown in the xz-plane with the missing positive y-axis
pointing into the page. The transversal condition creates forbidden vertical tangencies and
crossing in front diagrams as shown in Figure 3, to be discussed further in Section 3.
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Figure 3. Downward vertical tangencies and down-down positive crossing
are forbidden.

Two transverse knots are equivalent if one can be deformed to the other without introduc-
ing any forbidden segments under the transversal condition in the process of deformation.
Just as there are Reidemeister moves for smooth knots, there are analogous Reidemeister
moves for transverse knots as long as they do not introduce forbidden crossing or tangenices.
Two transverse knots are transversely isotopic if and only if their diagrams are equivalent
under transverse Reidemeister moves.

Just as smooth knots have invariants that distinguish different smooth knots, there are
invariants for transverse knots. The two classical transverse knot invariants are: topological
knot type (smooth knot type) and the self-linking number. The self-linking number is the
writhe of the knot in the front diagram, defined by subtracting the number of negative
crossings from the number of positive crossings. The self-linking number shows that the two
transverse unknots in Figure 2 are different transverse unknots, and in fact, Lemma 3.16
shows us that there are an infinite number of transverse unknots.

There is a special operation called stabilization that allows us to move between the two
different transverse unknots in Figure 2. Stabilization of a transverse knot is formed by
taking an arc in the front diagram and doing a “double twist.” Performing a stabilization
on a transverse knot decreases the self-linking number by two, as two negative crossings
are added in the operation. For transversely simple knot types like the unknot, any two
transverse representatives are related by some number of stabilizations.

We study the notion of unknotting for transverse knots. In contrast to the smooth setting,
in a transverse setting only certain crossings can be changed. We call crossing changes that
are allowable in front diagrams of transverse knots transverse crossing changes. Figure 4
shows the transverse crossing changes.

Figure 4. Transverse crossing changes.

In this thesis, we define a new invariant: the transverse unknotting number. In Theo-
rem 5.1, we prove that every smooth knot has a transverse representative that can be trans-
versely unknotted. Building on this theorem in Section 5, we have the following important
result about transversely unknotting transverse knots:

Theorem 1.1. Every transverse knot can be transversely unknotted.
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Because there are many different transverse unknots, we could define the transverse un-
knotting number as the minimum number of transverse crossing changes necessary to reach
any transverse unknot or a particular transverse unknot. In this thesis, we define transverse
unknotting number by measuring how far away we are from the transverse unknot with
maximum self-linking number, sl = −1.

In Lemma 6.3, we establish a lower bound for the transverse unknotting number of a
transverse knot T , which is the maximum of the unknotting number of its smooth knot type
and the number of transverse crossing changes needed to reach sl(T ) = −1:

max

{
u(S),

∣∣∣∣sl(T ) + 1

2

∣∣∣∣} ≤ Ut−1(T ).

Furthermore, because a stabilization can be done and undone through a transverse crossing
change as shown in Lemma 5.3, we prove that Sn(T ), an n-th stabilization of a transverse
knot T , has an upper bound to its transverse unknotting number: Ut−1(S

n(T )) ≤ Ut−1(T )+n.
Combining this upper bound with Lemma 6.3, we then have the following corollary:

Corollary 1.2. For a transversely simple smooth knot type S with maximum self-linking
number m ≤ −3, assume that the maximum self-linking number transverse representative
T has transverse unknotting number Ut−1(T ) = |(sl(T ) + 1)/2|. Then, it follows that for any
transverse knot Ti in this smooth knot type S, the transverse unknotting number is

Ut−1(Ti) =

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ .
This thesis also explores how the ancestor-descendant relationship in smooth knots can

be applied to study transverse knots. As defined by Cantarella, Henrich, Magness, O’Keefe,
Perez, Rawdon, and Zimmer in [3], a smooth knot K1 is an ancestor of K2 if K2 can be ob-
tained from a minimal crossing diagram of K1 by some number of crossing changes. Note that
without the minimal crossing condition in the definition, the ancestor-descendant relation-
ship can be defined for any two smooth knots. Refer to Lemma 2.10 for further information
on why the minimal crossing diagram is necessary.

Cantarella et al. also showed that twist knots and (2, p)-torus knots are two knot families
that are closely related to each other in terms of ancestor-descendant relationship. They
proved that a knot K is a descendant of a twist knot Tn if and only if K = Tk for some
integer k with 0 ≤ k ≤ n. They also proved that a knot K is a descendant of a torus knot
T2,p if and only if K = T2,q for some integer 0 < q ≤ p, where p and q are odd integers.

As an adaptation of this ancestor-descendant relationship, we define the transverse family
tree. A sequence of transverse knots (T1, T2, . . . , Tn) is a transverse family tree if each Ti+1

can be obtained from Ti by a single transverse crossing change. Furthermore, we define that
a transverse family is maximal if each Ti has maximal self-linking number in its knot type.
Lastly, a transverse family tree is increasing if the self-linking numbers of Ti are strictly
increasing and decreasing if the self-linking numbers are strictly decreasing.

Lemma 7.3 shows that given any smooth knot types K1 and K2, there exists a transverse
family tree (T1, . . . , T2) where T1 is the maximum self-linking number transverse representa-
tive of knot type K1 and T2 is of K2. Refer to Section 7 for more information on transverse
family trees and the proof of Lemma 7.3.

Regarding transverse family trees, we have the following major results about twist knots
and (2, p)-torus knots:
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Theorem 1.3 (Twist Knot Transverse Family Trees).

(1) For any odd m ≥ 1, there exists a maximal decreasing transverse family tree
(Tm, Tm−2, . . . , T1), where Tj is a transverse representative of the twist knot Kj.

(2) For any even m ≥ 2, there exists a maximal decreasing transverse family tree
(Tm, Tm−2, . . . , T2), where Tj is a transverse representative of the twist knot Kj.

(3) There exists a transverse family tree (Tm, U, Tm−1, U, . . . , T1), where Tj is a transverse
representative of the twist knot Kj and U is a transverse unknot.

Theorem 1.4 (Torus Knot Transverse Family Trees).

(1) For all odd p ≥ 3, there exists a maximal decreasing transverse family tree
(T2,p, T2,p−2, . . . , T2,3), where T2,j is a transverse representative of the torus knot K2,j.

(2) For all odd n ≤ −3, there exists a maximal increasing transverse family tree
(T2,n, T2,n+2, . . . , T2,−3), where T2,j is a transverse representative of torus knot K2,j.

Section 2 provides a general background about smooth knots and introduces the newest
concept of the ancestor-descendant relationship as defined by Cantarella et al. Section 3
introduces transverse knots, which are the primary objects of study in this paper. The
section includes an explanation of the forbidden segments in front diagrams of transverse
knots, a proof that every smooth knot has a transverse representative, and the definition
of stabilization. Section 4 discusses crossing changes in transverse knots, which are realized
differently from smooth knots due to the forbidden crossing. Section 5 explores transverse
crossing changes further and addresses the question of whether all transverse knots can be
transversely unknotted. It includes a proof that every smooth knot has a transverse repre-
sentative that can be unknotted and contemplates the relationship between a stabilization
and a transverse crossing change to answer this question. Section 6 defines the transverse
unknotting number, which measures how far away a transverse knot is from the sl = −1
transverse unknot. It also includes lemmas about lower and upper bounds of the transverse
unknotting number. The last section examines the new notion of a transverse family tree,
which is an adaption of ancestor-descendant relationships in smooth knots. It includes major
results about twist knot transverse family trees and (2, p)-torus knot transverse family trees.

2. Smooth Knots

In this section, we will review some known definitions and results about smooth knots. It
is these concepts and results that we will try to extend to the world of transverse knots.

A knot is a closed curve in space that does not intersect itself anywhere. The simplest
knot of all knots is the unknotted circle, which is called the unknot or the trivial knot.

(a) An unknot. (b) A trefoil.

Figure 5. Examples of smooth knots.

The next simplest knot is called a trefoil knot, as shown in Figure 5 (B). There are many
different pictures of the same knot, and such a picture is called a diagram of the knot.
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A diagram is the knot’s projection together with a broken segment at each crossing that
indicates the strand with lower height.

Two knots K1 and K2 are isotopic (or equivalent) if we can deform K1 to K2 without
breaking and re-gluing the strands. More formally:

Definition 2.1. Two knots K and K̃ are isotopic if there is a family of knots Kt, param-

eterized by t ∈ [0, 1], such that K0 = K and K1 = K̃.

In fact, two knots are isotopic if and only if their diagrams are equivalent via planar isotopy
and Reidemeister moves.

Definition 2.2. A deformation of a knot diagram is called a planar isotopy if it can be
obtained from a deformation of the diagram plane as if it were made of rubber with the
diagram drawn upon it.

Definition 2.3. A Reidemeister move is one of three ways to change a diagram of the
knot that will change the number of or the relation between crossings.

The first Reidemeister move allows us to put in or take out a twist in the knot. The
second Reidemeister move allows us to either add two crossings or remove two crossings.
The third Reidemeister move allows us to slide a strand of the knot from one side of a
crossing to the other side of the crossing.

OR

Figure 6. Type I Reidemeister moves.

OR

Figure 7. Type II Reidemeister moves.

OR

Figure 8. Type III Reidemeister moves.

In 1926, mathematician Kurt Reidemeister proved:
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Theorem 2.4. Two knot diagrams represent equivalent knots if and only if the diagrams are
equivalent under planar isotopy and Reidemeister moves.

While we can use planar isotopy and Reidemeister moves to show that two knots are
equivalent, we use something called a knot invariant to show that two knots are different.

Definition 2.5. A knot invariant is a quantity defined for each knot that is the same for
equivalent knots.

Examples of knot invariants include tricolorability, unknotting number, bridge number,
crossing number, etc. While knot invariants can be used to distinguish different knots, having
the same knot invariant quantity does not necessarily imply that the two diagrams are the
same knot. For the purpose of this research, we will focus on unknotting number. To define
unknotting number, we first need to look at the following theorem.

Theorem 2.6. Given any knot diagram, by changing crossings, it becomes the diagram of
the unknot.

The following proof is from Adams’ The Knot Book, [1].

Proof. Given a diagram of a knot, select a starting point on the diagram that, for the sake
of convenience, is not at a crossing, and select a direction to traverse the knot. Starting at
that point, head along the knot in the chosen direction. Whenever we arrive at a particular
crossing, change the crossing if necessary so that the strand that we are on is the overstrand.
If we come to a crossing that we have already been through once, do not change the crossing,
but continue through it on the understrand. Once we return to our initial starting point,
we have a diagram of a knot that we obtained from the original knot diagram by changing
crossings. This new diagram will in fact be the trivial knot.

Figure 9. (a) Altered diagram. (b) Partial side view of the diagram. (c)
Side view of the diagram.

To see that this diagram actually is the trivial knot, view it in three-space. Think of the
z axis as coming straight out of the diagram towards us. Starting at the initial point again,
place that point in three-space with z-coordinate z = 1. As we traverse the knot, decrease
the z-coordinate of each of the points on the knot until we almost reach the initial starting
point. The last point will have z-coordinate z = 0. But since the last point and the initial
starting point should be the same point, we must put in a vertical bar from one to the other
to complete the knot. Note then that when we look straight down the z axis at our knot,
we see the diagram that we had changed the crossings to create. But when we look at our
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diagram from the side, we see a diagram with no crossings. Hence, this new knot diagram
is actually a trivial knot. �

From this theorem, we can define the knot invariant unknotting number. Because every
diagram of a knot can be turned into a diagram of the unknot by changing some subset of
the crossings in the diagram, it follows that every knot has a finite unknotting number.

Definition 2.7. A knot K has unknotting number n if there exists a diagram of the knot
such that changing n crossings in the diagram turns the knot into the unknot and there is
no diagram such that fewer changes would have turned it into the unknot.

In this definition of the unknotting number, we perform all the crossing changes in a
single diagram of the knot. According to Adams in The Knot Book, the unknotting number
is traditionally defined to be the least number of crossing changes necessary to change a
knot into an unknot, where we can perform the first crossing change in one diagram of the
knot, then do an ambient isotopy of the resulting diagram to a new diagram and change the
second crossing in that diagram. We can then do another ambient isotopy to a new diagram
before we change our third crossing, and continue in this manner until we have done all n
crossing changes.

The two definitions are in fact equivalent, as described in [1]. We can keep track of each
crossing change in the second definition with an arc that runs to and from the two points
on the knot where the crossing change occurs. As we do our ambient isotopy to another
diagram, we carry along these arcs, stretching and deforming them as necessary. By the
time we finish our n crossing changes, we have n such arcs. However, we can then shrink
each of these arcs down to a tiny arc, pulling the knot along, and make a single diagram
of the knot so that each arc appears as a vertical arc running from top of a crossing to the
bottom. Then, changing these crossing in this single diagram is equivalent to changing the
crossings one by one and allowing ambient isotopy to occur between the crossing changes.

Example 2.8. To understand the definition of unknotting number, consider the trefoil as an
example. We know that the trefoil is not equivalent to the unknot because the trefoil is
tricolorable1 while the unknot is not. Figure 10 illustrates this.

(a) A trefoil. (b) An unknot.

Figure 10. The trefoil is tricolorable while the unknot is not.

Because the trefoil is not equivalent to the unknot, we know that the unknotting number
of the trefoil must be at least 1. We will now prove that the unknotting number of the trefoil

1We say that a knot is tricolorable if each of the strands in the diagram can be colored one of three
different colors, such that at each crossing either three different colors come together or all the same color
comes together and at least two colors are used, [1]. Because all Reidemeister moves preserve tricolorability,
tricolorability is a knot invariant. This means that if a diagram is tricolorable, then all other diagrams of
the same knot are tricolorable as well.



8

is in fact 1 by showing that the trefoil diagram in Figure 5 (B) can be unknotted with just
a single crossing change.

Figure 11. Unknotting the trefoil.

Figure 11 (a) shows which crossing we will change in the diagram of the trefoil. Figure 11
(b) shows the diagram after one crossing change is made. Then, we use Type II Reidemeister
move to reach the diagram in (c). We finally use Type I Reidemeister move to reach the
diagram in (d), which is clearly a diagram of the unknot.

Hence, we have shown that there exists a diagram of the trefoil that can be unknotted
with just one crossing change. By the definition of unknotting number, we then conclude
that the trefoil has unknotting number 1.

As we can see in the above example, it is simple to calculate the unknotting number if
there exists a diagram that can be unknotted with just one crossing change. However, in
general, the unknotting number of a knot is very difficult to calculate, because it is hard to
verify that the number in question really is the minimal number of crossing changes necessary
to unknot the knot across all its diagrams. Moreover, sometimes the unknotting number is
not realized in a minimal crossing diagram of the knot.

It is known that the unknotting number of a non-trivial twist knot is 1, and the unknotting
number of a (p, q)−torus knot is (p− 1)(q − 1)/2. The unknotting number of all prime knots
with 9 or fewer crossings have all been determined and can be found on the Knotinfo website,
[14], along with information about other knot invariants.

While the unknotting number is a classical invariant, recently the new concept of ancestor-
descendant relationship has been defined and explored by Cantarella, Henrich, Magness,
O’Keefe, Perez, Rawdon, and Zimmer, [3].

Definition 2.9. A knot H is a descendant of another knot K if H can be obtained from
a minimal crossing diagram of K by some number of crossing changes. In this case, we say
that K is a ancestor2 of H.

Note the difference in definition between unknotting number and ancestor-descendant
relationship. Unknotting number focuses on reaching the unknot through crossing changes,
while ancestor-descendant relationship examines obtaining another knot (not necessarily the
unknot) from a minimal crossing diagram of a knot through crossing changes.

2Cantarella, Henrich, Magness, O’Keefe, Perez, K., Rawdon, and Zimmer defined K in this relationship as
a parent of H. However, the term ancestor seems more appropriate here as a complement to a descendant,
as parent suggests a closer relationship. For the purpose of this paper, we will continue to define this knot
relationship as an ancestor-descendant relationship.
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It is important to note that by definition the descendant knot is obtained from a minimal
crossing diagram of the ancestor knot. The following lemma shows that without this minimal
crossing condition, the ancestor-descendant relationship can be defined for any two knots.

Lemma 2.10. Given any two knots K1 and K2, there exists a not necessarily a minimal
crossing diagram of K1 that can be changed to a diagram of K2 by crossing changes.

Proof. Let K1, K2 be any two knots that are not equivalent to each other. Consider the
following knot shadow3 of the composition knot K1#K2.

Figure 12. A knot shadow of the composition knot K1#K2

We want to prove that there exists a diagram of K1 that can be changed to a diagram
of K2 by crossing changes. First, choose crossings in the K1 section of Figure 12 so that
we have the K1 knot on the left side. By Theorem 2.6, we can choose crossings in the K2

section of Figure 12 so that we have an unknot on the right side. Note that this unknot will
have the same knot shadow as the diagram of K2 in the original composition knot.

We now have a diagram of the K1 that can be changed to a diagram of K2 by crossing
changes. We simply reverse what we did on both sides. On the left side where we have the
K1 knot, we go through the process of crossing changes described in Theorem 2.6 to turn
it into an unknot. On the right side where we have the unknot, we can change crossings so
that we now have the K2 knot. This is possible because the unknot was originally produced
from the knot shadow of K2.

Thus, we have shown that there exists a diagram of K1 that is not necessarily a minimal
crossing diagram that can be changed to a diagram of K2 by crossing changes. Similarly,
there exists a diagram of K2 that can be changed to a diagram of K1 by crossing changes. �

From the lemma above, we see that the minimal crossing diagram is an essential condition
to the definition of descendant knots. While the unknotting number is not always realized
in the minimal crossing diagram, the descendant definition loses significance without the
minimal crossing diagram condition, as we can get from one knot to another for all knots.

Example 2.11. We will now examine an example that illustrates the difference between the
unknotting number and the ancestor-descendant relationship. Consider the following knot

3A knot shadow is the diagram of the knot such that at crossings, the overstrand and understrand are
not specified.
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with Conway notation 514. It is known that this knot cannot be drawn with fewer crossings,
so its crossing number is 10. It is also known that this is the only diagram (up to planar
isotopy and mirror reflection) of this knot with 10 crossings, [1].

Figure 13. The knot 514.

It can be shown with a simple exercise that it takes at least three crossing changes in the
diagram in Figure 13 to unknot this knot. Hence, by the definition of ancestor-descendant
relationship, we can say that this knot is an ancestor of the unknot and that they are related
by three crossing changes.

On the other hand, the unknotting number of the knot 514 is in fact 2, and the unknotting
number is realized in a different diagram with more crossings. The knot 514 is an example
of a knot whose unknotting number is not realized in its minimal crossing diagram.

This example illustrates the difference between the unknotting number and the ancestor-
descendant relationship. The knot 514 is an ancestor to the unknot related by three crossing
changes, but it can be unknotted with just two crossing changes.

In Theorem 2.6, we proved that any knot diagram can be unknotted by crossing changes.
By the definition of ancestor-descendant relationship, a consequence of Theorem 2.6 is:

Theorem 2.12. Every knot is an ancestor of the unknot.

Based on the definition of the knot ancestor-descendant relationship, we can also prove
the following lemma:

Lemma 2.13. Every smooth knot K is an ancestor of its mirror.

Proof. Given a minimal crossing diagram of K, we can change all the crossings in the diagram
to obtain its mirror, m(K). It follows by definition that K is an ancestor of m(K). Similarly,
m(K) is also an ancestor of K. �

Cantarella, Henrich, Magness, O’Keefe, Perez, Rawdon, and Zimmer in [3] also showed
that two key knot families, twist knots and (2, p)-torus knots, are distinct in that they are
closely related to each another in terms of ancestor-descendant relationship and are rather
insular. They provided the following results about the two families:

Theorem 2.14. The knot K is a descendant of twist knot Tn if and only if K = Tk for
some integer k with 0 ≤ k ≤ n.
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Theorem 2.15. The knot K is a descendant of torus knot T2,p if and only if K = T2,q for
some 0 < q ≤ p, where p and q are odd integers.

3. Transverse Knots

In the previous section, we studied smooth knots in R3. Now we want to consider smooth
knots that satisfy an additional condition imposed by a contact structure.

In multivariable calculus, it is common to study vector fields, where every point in space
is associated with a vector and the vector varies smoothly from point to point. A plane
field on R3 is given by associating a two-dimensional plane to every point in R3, and the
planes vary smoothly. We will look at some examples of plane fields.

Example 3.1. The following is a basic example of a plane field. At each point (x, y, z) ∈ R3

we associate the plane η(x,y,z) that is parallel to the xy-plane. In other words, the plane

η(x,y,z) is spanned by the vectors ~i and ~j.
This is an example of an integrable plane field, since these planes arise as tangent planes

to a partition of R3 into 2-dimensional surfaces. In particular, consider R3 = qLc where
Lc = {z = c} is the 2-dimensional plane. For all points (x, y, c) ∈ Lc, η(x,y,z) = T(x,y,c)Lc.

Figure 14. A tangent plane T(x,y,c)Lc in an integrable plane field.

More generally, if we begin by partitioning R3 into smooth 2-dimensional surfaces so that
R3 = qSi, then we can obtain a plane field by considering the 2-dimensional tangent planes
to these surfaces.

Definition 3.2. A plane field on R3 is called integrable if it can be seen as the tangent
planes to some partition of R3 by two-dimensional surfaces.

Example 3.3. In contrast, we will now focus on plane fields that are maximally non-
integrable, which means the planes are never the tangent planes for any surface. In this
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second example we consider the standard contact structure, where the plane ξ(x,y,z) at

each point is spanned by ~j and ~i+ y~k, as shown in the diagram below.

Figure 15. The standard contact structure on R3; invariant under transla-
tions in z-direction.

Observe how the slope of the planes becomes steeper as we go further down the y axis
(towards the right direction), creating a sort of “twist.” Because of the “twist” constantly
imposed by the structure, these planes are not tangent to any surface. Hence, there does
not exist a two-dimensional surface in R3 such that the planes are tangent to the surface.

Definition 3.4. Transverse knots are oriented smooth knots such that at every point in

the knot, the tangent vector does not lie in the contact plane; that is, γ′(t) 6∈ 〈~j,~i+ y~k〉 |γ(t).
To understand what transverse means in terms of parameterization, we turn to the fol-

lowing lemma:

Lemma 3.5. Consider a curve γ(t) = (x(t), y(t), z(t)). If z′(t)−y(t)x′(t) = 0, then it follows

that γ′(t) ∈ 〈~j,~i+ y~k〉 |γ(t).

Proof. Consider γ′(t) = x′(t)~i + y′(t)~j + z′(t)~k. Assume that z′(t) − y(t)x′(t) = 0 for all t.
By basic algebra, this implies that z′(t) = y(t)x′(t) for all t.

Then,

γ′(t) = x′(t)~i+ y′(t)~j + y(t)x′(t)~k

= y′(t)~j + x′(t)[~i+ y(t)~k]

∈ 〈~j,~i+ y~k〉 |γ(t) by definition.

�

By contrapositive, we have the following corollary to Lemma 3.5.

Corollary 3.6. If γ′(t) 6∈ 〈~j,~i+ y~k〉 |γ(t), then z′(t)− y(t)x′(t) 6= 0.

Simply put, if the knot is transverse and thus the tangent vector γ′(t) does not lie in the
contact plane, then z′(t)− y(t)x′(t) 6= 0 in terms of parameterization.

Definition 3.7. In this research, we focus on positively transverse knots. In terms of
parameterization, the positive transversal condition is

z′(t)− y(t)x′(t) > 0.
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The above condition implies that z′(t) > y(t)x′(t). When x′(t) > 0, y(t) is bounded above
by the slope dz

dx
, whereas when x′(t) < 0, y(t) is bounded below by the slope dz

dx
, [16].

It is important to note that transverse knots always have an orientation. An orientation
is defined by choosing a direction to travel around the knot, [1]. Changing the orientation
turns a positive transverse knot into a negative transverse knot and vice versa. When an
orientation is assigned to a knot diagram, we can define positive and negative crossings.

Definition 3.8. At any crossing, when a clockwise rotation takes the understrand to over-
strand, the crossing is positive. If a counterclockwise rotation takes the understrand to
overstrand, the crossing is negative.

Figure 16. Positive crossings.

Figure 17. Negative crossings.

We observe transverse knots in their front diagrams, which are xz-diagrams in 3-
dimensional space where x is on the horizontal axis and the z is on the vertical axis. To
keep the standard right-handed orientation, the positive y-axis points into the page. The
transversal condition creates forbidden vertical tangencies and crossing in front diagrams.

Lemma 3.9. In any front diagram of a transverse knot, the following vertical tangencies
and crossing are forbidden:

Figure 18. Downward vertical tangencies and down-down positive crossings
are forbidden.

Proof. We will first prove that the downward vertical tangencies are forbidden.
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Figure 19. (a) A rightward downward tangency; (b) its dz
dx

plotted in a Carte-
sian coordinate system where t is the horizontal axis and y the vertical axis.

First consider Figure 19 (a). During the upper half of the downward vertical tangency, we
have x′ > 0 because the orientation is from left to right. Thus, by the positive transversal
condition, y < dz

dx
. Similarly, during the lower half of the downward vertical tangency, x′ < 0

because the orientation is from right to left. It must be that y > dz
dx

by the positive transversal
condition.

In Figure 19 (b), we have approximately graphed y = dz
dx

in a Cartesian coordinate system
where t is the horizontal axis and y is the vertical axis. The colored area represents all
possible y-values according to the positive transversal condition. We see that under the
positive transversal condition, there exists a t for which it is impossible to define a y-value.

A similar argument follows for leftward vertical tangencies.

Figure 20. (a) A leftward downward tangency; (b) its dz
dx

plotted in a Carte-
sian coordinate system where t is the horizontal axis and y the vertical axis.

Thus, downward vertical tangencies are forbidden in front diagrams of a transverse knot.
Now we want to prove that the down-down positive crossings are also forbidden. Consider
the following diagram.
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Figure 21. (a) A down-down positive crossing; the black strand has a greater
y-coordinate. (b) dz

dx
for both the understrand and the overstrand of the cross-

ing plotted in a Cartesian coordinate system where t is the horizontal axis and
y is the vertical axis.

First consider the understrand in Figure 21 (a). Because the orientation is from left to
right, we have x′ > 0. By the positive transversal condition, it must be that y < dz

dx
for the

understrand. Because the understrand has a negative slope as shown in Figure 21 (a), it
follows that dz

dx
< 0. Hence, we have y < dz

dx
< 0 for the understrand.

Now consider the overstrand. We have x′ < 0 because the orientation is from right to
left. Hence, it must be that y > dz

dx
for the overstrand by the positive transversal condition.

Because the overstrand has a positive slope, we know that dz
dx
> 0. Thus, it must be that

y > dz
dx
> 0 for the overstrand.

This is represented in Figure 21 (b), where we have approximately graphed y = dz
dx

for
both the overstrand and the understrand in a Cartesian coordinate system where t is the
horizontal axis and y the vertical axis. The colored area represents all possible y-coordinates
according to the positive transversal condition, the red area for the overstrand and the black
area for the understrand.

But the understrand must have a y-value greater than the overstrand. Recall that we are
looking at front diagrams, which are xz-diagrams in 3-dimensional space. When we think
about these front diagrams in 3-dimensional space, the y-axis represents the depth and y-
value increases as we go deeper into the diagram. Hence, the down-down positive crossing
is forbidden in a front diagram of a transverse knot. �

We will call all other vertical tangencies and crossings that can be realized in front diagrams
under the transversal condition allowable.

Hence, the transversal condition poses restrictions that distinguish transverse knots from
smooth knots. However, we can always produce a transverse representative from any smooth
knot diagram.

Lemma 3.10. Every smooth knot has a transverse representative.

Proof. Begin with any smooth knot diagram. In order to create a transverse representative,
we must remove all forbidden downward vertical tangencies and forbidden down-down posi-
tive crossings. First, we remove forbidden vertical tangencies through the operation shown
below in Figure 22:
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Figure 22. Removing forbidden vertical tangencies by introducing trivial loops.

By introducing a new trivial loop to the forbidden vertical tangency, we remove the for-
bidden vertical tangency without creating other forbidden segments. The new crossing of
the loop is an allowable crossing, and the new vertical tangency has an upward orientation
and hence is also allowable. Since this move is a Reidemeister move for smooth knots, this
does not affect the topological knot type of the new diagram.

Now, we want to remove forbidden down-down positive crossings from the diagram. We
use the operation shown below in Figure 23:

Figure 23. Removing forbidden crossing.

Through this move, we can alter the down-down positive crossing to an allowable crossing
under the transversal condition. The operation introduces two new trivial loop crossings,
but as they are both negative they are allowable. In addition, no forbidden vertical tangency
is introduced. This move also does not affect the topological knot type, since it consists of
isotopy and Reidemeister moves for smooth knots.

Hence, by removing forbidden vertical tangencies and forbidden crossings, we can form a
transverse representative from any smooth knot. �

In the first section, we learned how to show that two smooth knots are equivalent by
showing their diagrams are equivalent through planar isotopy and Reidemeister moves. Sim-
ilarly, two transverse knots are equivalent if we can get from one knot to the other through
transverse isotopy and transverse Reidemeister moves.

Two transverse knots T1 and T2 are transversely isotopic if we can deform T1 to T2 without
breaking and re-gluing the strands and without introducing any forbidden segments under
the transversal condition in the process of deformation. More formally:

Definition 3.11. Two transverse knots T and T̃ are transversely isotopic if there is a

family of transverse knots Tt, parameterized by t ∈ [0, 1], such that T0 = T and T1 = T̃ .

Just as there are Reidemeister moves for smooth knots, there are Reidemeister moves
for transverse knots. The following in Figure 18 are the two Reidemeister moves for front
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diagrams of transverse knots. Orientations on the strands are allowed in all ways that do
not produce forbidden vertical tangencies or forbidden crossings.

Figure 24. Transverse Type II Reidemeister moves.

Figure 25. Transverse Type III Reidemeister moves.

In 1992, mathematician Jacek Swiatkowski proved in [15]:

Theorem 3.12. Two transverse knots are equivalent up to transverse isotopy if and only if
their xz-diagrams are related by the transverse Reidemeister moves in Figures 24 and 25.

While we can use transverse isotopy and transverse Reidemeister moves to show that two
transverse knots are equivalent, we can use transverse knot invariants to show that two
transverse knots are different. There are two classical transverse knot invariants.

The topological knot type (smooth knot type) is one of the two classical invariants that
distinguish different transverse knots, and the other is the self-linking number :

Definition 3.13. A self-linking number is the writhe of the knot in its front diagram.The
writhe of a knot diagram D is defined by w(D) = p(D)− n(D), where p(D) is the number
of positive crossings of D and n(D) is the number of negative crossings of D.
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An important result about transverse knots is that there is an upper bound on the self-
linking number for all transverse knots, [2]. Before we state this theorem, recall that a Seifert
surface for K is an orientable surface in R3 with the knot K as its one boundary component.
It is known that a knot has many Seifert surfaces of different genus, and g(K) is defined as
the minimal genus of a Seifert surface for the knot K.

Theorem 3.14 (Bennequin). Let T be a transverse knot in (R3, ξstd) whose smooth knot
type is KT . Then,

sl(T ) ≤ 2g(KT )− 1

where g(KT ) is the minimal genus of the smooth knot type KT .

To calculate the Bennequin bound of the self-linking number for a transverse knot, we
simply refer to the genus chart in the Knotinfo website, [14]. Other upper bounds to sl(T )
have been found. An important problem is to find the max{sl(T )}, where T ranges over
transverse representatives of a fixed knot type. For some knot types, this maximum is known.

Given a transverse knot, there is a simple way to get another transverse knot in the
topological knot type: stabilization [2, 9].

Definition 3.15. The stabilization of a transverse knot T is formed by taking an arc in
the front diagram and doing a “double twist” as shown in Figure 26 below:

Figure 26. Stabilizations.

We use the notation Sn(T ) to express an n-th stabilization of T . Stabilization is a well-
defined operation; it does not depend on at what point the stabilization is done. Stabilization
also does not introduce any forbidden segment, so it does not violate the transversal condition
and the newly produced knot is also a transverse knot.

Note that stabilization decreases sl by 2, as the operation introduces two new negative
crossings. Since the self-linking number changes, stabilization guarantees that we produce a
different transverse knot. The topological knot type remains the same, since the operation
is a series of Type I Reidemeister move for smooth knots.

We saw in Lemma 3.10 that every knot has a transverse representative. In other words, for
every smooth knot, there exists a transverse knot that has the smooth knot as its topological
knot type. But in fact, smooth knots have many different transverse representatives. We
will use the stabilization operation to prove this.

Lemma 3.16. Every smooth knot has an infinite number of non-equivalent transverse rep-
resentatives.

Proof. By Lemma 3.10, we know every smooth knot has a transverse representative. Let T1
be a transverse representative of some smooth knot K and sl(T1) = n for some integer n.
To show there are many other transverse representatives, we use the stabilization operation.
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Suppose we obtain T2 by a stabilization on T1. Then, it follows that sl(T2) = n − 2 and
T1 and T2 are different transverse knots by the definition of knot invariants. We can then do
another stabilization on the new T2 to produce T3 with sl(T3) = n− 4, and so on.

Hence, we can use stabilizations to show that there is an infinite number of non-equivalent
transverse knots with the same topological knot type. �

In general, knot invariants are used to distinguish knots and do not necessarily confirm
the equivalence of different diagrams. However, for transverse knots, there exist certain knot
types that are completely determined by their self-linking number, [11].

Definition 3.17. A knot type is transversely simple if all transverse knots in this knot
type are completely determined by their self-linking number.

Several knot types are known to be tranversely simple. For example, Eliashberg proved
that the unknot is transversely simple, [6]. Similarly, Etnyre and Etnyre-Honda have shown
that torus knots and the figure eight knot are transversely simple, [7, 8].

4. Crossing Changes in Transverse Knots

We previously defined the unknotting number and ancestor-descendant relationships for
smooth knots. Now we want to explore how they can be adapted to study transverse knots.

The most important part of the unknotting number and the ancestor-descendant relation-
ship is crossing change, whether or not we can get from one knot to another through crossing
changes. In transverse knots, crossing change is limited due to a forbidden crossing. We call
crossing changes that are possible in transverse knots transverse crossing changes. Below
are the three sets of transverse crossing changes.

Figure 27. Transverse crossing changes.

On the other hand, the following crossing is rigid because changing the crossing in trans-
verse knots will result in the forbidden crossing.

Figure 28. Rigid crossing.

Lemma 4.1. Suppose K is transverse knot. If K̃ is obtained from K by transverse crossing

changes, then K̃ is also a transverse knot.

The lemma holds because transverse crossing changes do not introduce any forbidden
segment. We also want to consider how crossing changes affect the self-linking number.
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Lemma 4.2. Suppose K and K̃ are both transverse knots. If we obtain K̃ from K by one

transverse crossing change, then the difference between sl(K) and sl(K̃) is exactly ±2.

Proof. Let p be the number of positive crossings in K and n the number of negative crossings

in K. By definition of self-linking number, sl(K) = p − n. We assume that we obtain K̃
from K by one transverse crossing change. There are two cases: either we change a positive
crossing to a negative or a negative crossing to a positive.

In the first case, the number of positive crossings in K̃ is (p−1) and the number of negative
crossings is (n+ 1). Then,

sl(K̃) = (p− 1)− (n+ 1)

= (p− n)− 2

= sl(K)− 2

In the second case, the number of positive crossings in K̃ is p + 1 and the number of
negative crossings is (n− 1). Then,

sl(K̃) = (p+ 1)− (n− 1)

= (p− n) + 2

= sl(K) + 2

�

5. Transverse Unknotting

Having established transverse crossing changes, a natural question is: can every transverse
knot be converted to a transverse unknot through transverse crossing changes? To explore
this question we want to look at the following diagram of a transverse trefoil.

Figure 29. A transverse trefoil.

As the diagram in Figure 29 consists only of rigid crossings, we cannot make any trans-
verse crossing change to transversely unknot it. However, there is another diagram of this
transverse trefoil that can be transversely unknotted. In fact, all transverse knots can be
transversely unknotted. To prove this, we first examine the theorem below:

Theorem 5.1. Every smooth knot type has a transverse representative that can be trans-
versely unknotted.
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Proof. By Lemma 3.10, we know that we can produce a transverse representative from any
smooth knot. Begin with this transverse representative. From here we want to create another
transverse representative that can be unknotted. In fact, we want to remove rigid crossings
in the diagram so that transverse crossing change is always possible. However, we do not
remove rigid crossings that are part of trivial loops as shown in Figure 22, since changing
the crossing of a loop does not affect the unknotting process, and it is inevitable that trivial
loops have been introduced to remove forbidden vertical tangencies and forbidden crossings.

Now let us examine the operation of removing all other rigid crossings; we can do this in
a way similar to removing forbidden crossings:

Figure 30. Removing rigid crossing.

The justification for this move is the same as the move for removing forbidden crossing in
Figure 23. Through this move, we can adjust the rigid crossing to transform it into a non-
rigid crossing. Two new trivial loops are introduced in the process to avoid forbidden vertical
tangencies, and the newly formed crossings from the loops are also allowable. Similarly, this
move does not affect the topological knot type.

Now we have a diagram of a transverse knot that has the original smooth knot as its
topological knot type, and we can make transverse crossing changes on any non-trivial loop
crossings in this diagram. Thus, we have now created a candidate transverse knot that can
be unknotted. Now we will adapt the proof for Theorem 2.6 by Adams in The Knot Book
to show that this diagram of a transverse knot can be unknotted.

Select a starting point on the knot that for convenience is not a crossing, and also select
a direction to traverse the knot. Beginning at that point, we head along the knot in our
chosen direction. When we come across a crossing, there are two cases: 1) it is a crossing
of a trivial loop 2) it is not a crossing of a trivial loop. If it is a crossing of a trivial loop,
we do not change the crossing, since changing the crossing of a trivial loop on its own does
not remove the trivial loop nor influence the unknotting process. For all other crossings, the
first time that we arrive at a particular crossing, we change the crossing if necessary so that
the strand we are on is the overstrand. Then we continue through that crossing along the
knot. If we come to a crossing that we have already been through once, we do not change
that crossing, but rather continue through it on what must necessarily be the understrand.
Once we return to our initial starting point, we now have a diagram of a new transverse knot
that was obtained from our original transverse knot by transverse crossing changes and that
will in fact be a trivial transverse knot.

To verify that this is the trivial knot in terms of topological knot type, we think of the xz
diagram in the three-space, with the y axis going straight into the diagram plane. Starting at
the initial point again, we place that point in three-space with y-coordinate y = 0. Now, as
we traverse the knot, we increase the y-coordinate of each of the points on the knot. The only
exception is when we reach trivial loops. The y-coordinates must be adjusted accordingly,
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but we can disregard the pattern in trivial loops as they do not affect the overall topological
knot type. Hence, we continue to increase y-coordinate of the points until we get almost
back to where we started. That last point will have y-coordinate y = 1. But since we gave
the initial point and the last point y-coordinates y = 0 and y = 1, and these are supposed
to be the same point, we had better put in a vertical bar from one to the other to complete
the knot. Note then that when we look straight down the y axis at our knot, we see the
diagram that we had changed the crossings to create. However, when we look at our diagram
from the side, we see a diagram with no crossings other than the trivial loops. Hence, the
topological knot type of the new transverse knot is the unknot, and the original transverse
knot before the crossing changes can be transversely unknotted.

Hence, we have verified that for every smooth knot, there exists a transverse representative
that can be transversely unknotted. �

Now we consider the relationship between different transverse knots with the same topo-
logical knot type. We previously defined an operation called stabilization. Fuchs and Tabach-
nikov proved the following about how stabilization defines relationship between between two
transverse knots of the same topological knot type, [13].

Theorem 5.2. Given two transverse knots T1 and T2 that are topologically isotopic, then
after each has been stabilized some number of times they will be transversely isotopic.

In Theorem 5.1, we have shown that every smooth knot has a transverse representative
that can be changed to a transverse unknot by transverse crossing changes. As mentioned
in Lemma 3.16, there are an infinite number of transverse unknots. In fact, if a transverse
knot T can be converted to one transverse unknot by transverse crossing changes, then T
can also be be converted to any transverse unknot by the following lemma:

Lemma 5.3. If K and K̃ are related by a stabilization, then there exists a transverse crossing
change in K that produces K̃ and a transverse crossing change in K̃ that produces K.

Proof. Suppose that K and K̃ are related by a stabilization. For the sake of convenience,
suppose that a stabilization on K produces K̃. We will show that there exists a transverse
crossing change in K̃ that produces K and also that there exists a transverse crossing in K
that produces K̃.

First, we want to show that there exists a transverse crossing change in K̃ that produces
K. Since K̃ is produced by a stabilization on K, we want to show that stabilization can be
undone by a transverse crossing change.

Figure 31. Crossing change in stabilization.

We move through Figure 31 from left to right. Begin with a completed stabilization on K̃.
Then, change the marked crossing to reach the middle diagram; note that this is a transverse
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crossing change. Now we use transverse Type II Reidemeister move and transverse isotopy
to reach the rightmost diagram, and we have undone the stabilization to produce K. Hence,
we can get from K̃ to K through a transverse crossing change.

We also want to show that there exists a transverse crossing change in K that produces K̃.
For this proof, we will prove that stabilization can be done by a transverse crossing change.

We now move through Figure 31 from right to left. Begin with an arc on K, as shown
on the rightmost diagram. We use transverse isotopy and transverse Type II Reidemeister
move to reach the center diagram in Figure 31. Observe that this transverse Type II Reide-
meister move is possible because it does not introduce forbidden segments. Now, we make a
transverse crossing change at the designated crossing, and we have completed a stabilization
to produce K̃. Hence, we can get from K to K̃ through a transverse crossing change.

As stabilization can be done and undone through a transverse crossing change, given two
transverse knots K and K̃ related by a stabilization, there exists a transverse crossing change
that produces K from K̃ and a transverse crossing change that produces K̃ from K. �

Corollary 5.4. If a transverse knot T can be converted to a transverse unknot by transverse
crossing changes, then T can be converted to any transverse unknot by transverse crossing
changes.

The above corollary holds because the unknot is a transversely simple knot type. In fact,
Lemma 5.3 also leads to the following corollary:

Corollary 5.5. Given a smooth knot type K, then any two transverse knots of K are equiv-
alently related by transverse crossing changes.

The above corollary holds because Theorem 5.2 tells us that any two transverse knots of
K are transversely isotopic after some number of stabilizations and by Lemma 5.3 we know
that a stabilization can be done and undone through a transverse crossing change.

Now we prove the following theorem:

Theorem 5.6. Every transverse knot can be transversely unknotted.

Proof. Let T be an arbitrary transverse knot. Consider its smooth knot type, K.
By Theorem 5.1, there exists a transverse representative T ′ in knot type K that can be

transversely unknotted. Because T and T ′ are topologically isotopic, by Theorem 5.2 we
know that after each transverse knot has been stabilized some number of times they will be
transversely isotopic, Sn(T ) = Sm(T ′).

As T ′ can be transversely unknotted, Lemma 5.3 implies that Sm(T ′) can be transversely
unknotted as well. Because Sn(T ) = Sm(T ′), it follows that Sn(T ) can be transversely
unknotted. As Lemma 5.3 shows that a stabilization can be done and undone through a
transverse crossing change, we conclude that T can also be transversely unknotted. �

6. Transverse Unknotting Number

By Corollary 5.4 and Theorem 5.6, we know that all transverse knots can be converted
to any transverse unknot by transverse crossing changes. Now we want to define the trans-
verse unknotting number. For smooth knots, the unknotting number measures the minimum
number of crossing changes necessary to get to the unknot. Since there are different trans-
verse unknots, we could define the transverse unknotting number as the minimum number
of transverse crossing changes to get to any transverse unknot or a particular transverse un-
knot. In this paper, we choose to measure how far away we are from the transverse unknot
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with the maximum self-linking number, sl = −1. Hence, we define transverse unknotting
number as the following:

Definition 6.1. A transverse knot T has transverse unknotting number n if there exists
a diagram of the transverse knot such that transversely changing n crossings in the diagram
turns T into the transverse unknot with sl = −1 and there is no diagram of T such that
fewer transverse crossing changes would have produced the transverse unknot with sl = −1.
We use the notation Ut−1(T ) for the transverse unknotting number of T .

Because every front diagram of a transverse knot can be turned into a front diagram of
any transverse unknot by transversely changing some subset of the crossings in the diagram,
it follows that every transverse knot has a finite transverse unknotting number.

Remark 6.2. If a transverse knot T can be transversely unknotted with n crossing changes,
then it follow that T bounds a symplectic disk with n transverse double points. This can be
shown using an argument in the proof of Lemma 6.1 in [5].

Lemma 6.3. Let T be a transverse knot that has smooth knot type S. Then,

max

{
u(S),

∣∣∣∣sl(T ) + 1

2

∣∣∣∣} ≤ Ut−1(T )

where u(S) is the unknotting number of the smooth knot S and |(sl(T ) + 1)/2| is the number
of transverse crossing changes necessary to obtain sl(T ) = −1.

Remark 6.4. Let m = max {u(S), |(sl(T ) + 1)/2|}. If we can show that a transverse knot T
has a diagram such that transversely changing m crossings in the diagram turns T into the
transverse unknot with sl = −1, then Ut−1(T ) = m.

Lemma 6.5. Let T be a transverse knot and consider its n-th stabilization, namely Sn(T ).
Then, Ut−1(S

n(T )) ≤ Ut−1(T ) + n.

Proof. By Lemma 5.3, we know that we can get from Sn(T ) to T by n transverse crossing
changes. Hence, it follows that Ut−1(S

n(T )) ≤ Ut−1(T ) + n. �

Corollary 6.6. For a transversely simple smooth knot type S with maximum self-linking
number m ≤ −3, suppose that the maximum self-linking number transverse representative
T has transverse unknotting number Ut−1(T ) = |(sl(T ) + 1)/2|. Then, it follows that for any
transverse knot Ti in this smooth knot type S, the transverse unknotting number is

Ut−1(Ti) =

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ .
Proof. For a transversely simple knot type, the transverse knots are completely determined
by their self-linking number and are related to each other by stabilizations. Hence, we can
write every Ti as an n-th stabilization of T for some n ∈ N: Ti = Sn(T ).

From our assumptions, Ut−1(T ) = |(sl(T ) + 1)/2| implies that u(S) ≤ |(sl(T ) + 1)/2| when we
consider Lemma 6.3 for T . Using Lemma 6.3 for Ti, we have

max

{
u(S),

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣} ≤ Ut−1(Ti).
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Because Ti is a n-th stabilization of T , we know that sl(Ti) = sl(T )− 2n. Then,∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ =

∣∣∣∣sl(T )− 2n+ 1

2

∣∣∣∣
=

∣∣∣∣sl(T ) + 1

2
− n

∣∣∣∣
=

∣∣∣∣sl(T ) + 1

2

∣∣∣∣+ |−n| because sl(T ) < −3

=

∣∣∣∣sl(T ) + 1

2

∣∣∣∣+ n because n > 0.

Since we know that u(S) ≤ |(sl(T ) + 1)/2|, it follows that u(S) < |(sl(T ) + 1)/2|+n = |(sl(Ti) + 1)/2|.
Hence, Lemma 6.3 implies that

max

{
u(S),

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣} =

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣
=⇒

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ ≤ Ut−1(Ti) (1)

By Lemma 6.5, Ut−1(T ) = |(sl(T ) + 1)/2| also implies that

Ut−1(Ti) ≤ Ut−1(T ) + n

=

∣∣∣∣sl(T ) + 1

2

∣∣∣∣+ n by our assumption

=

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ by our previous calculations. (2)

Combining (1) and (2), we conclude that

Ut−1(Ti) =

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ .
Hence, given a transversely simple smooth knot type with maximum self-linking number

m ≤ −3, if the maximum self-linking number transverse representative has transverse un-
knotting number that is determined by its self-linking number, then all transverse knots of
this smooth knot type have transverse unknotting number determined by their self-linking
numbers as well. �

Example 6.7. We want to use some transversely simple knot types with low crossing numbers
to illustrate how Corollary 6.6 can be applied.

Consider the smooth knot 51. Because 51 is a torus knot, it is transversely simple, [10].
According to the knot atlas in [4], the maximum self-linking number for 51 is sl = −7. Now
we want to find the maximum self-linking number transverse representative of 51. Consider
the diagram of T5 in Figure 33.
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Figure 32. T5, a transverse representative of 51.

It is not difficult to verify that T5 is the maximum self-linking number transverse repre-
sentative of 51. The diagram shows seven negative crossings in total, and hence sl(T5) = −7.
Because u(51) = 2 and |(sl(T5) + 1)/2| = 3, we know by Lemma 6.3 that

max

{
u(51),

∣∣∣∣sl(T5) + 1

2

∣∣∣∣} = 3 ≤ Ut−1(T5).

Now we want to prove that, in fact, Ut−1(T5) = 3 by showing that T5 can be converted to
the sl = −1 unknot by just 3 transverse crossing changes. Observe that all the non-trivial
loop crossings of T5 are non-rigid, so we can transversely change any of those crossings. We
make the following three transverse crossing changes on T5:

Figure 33. A transverse knot after three transverse crossing changes are
performed on T5. We will call this knot Tc.

Observe that now we can perform the transverse Type II Reidemeister move twice on Tc
to remove two pairs of positive and negative crossings. It is then not hard to see that Tc is
topologically an unknot. And because we changed three negative crossings to positive in T5
to produce Tc, we have sl(Tc) = sl(T5)+6 = −7+6 = −1. This confirms that we can convert
T5 to the sl = −1 transverse unknot by 3 transverse crossing changes, and Ut−1(T5) = 3.

Using Corollary 6.6, we conclude that for any transverse knot Ti in smooth knot type 51,
the transverse unknotting number is

Ut−1(Ti) =

∣∣∣∣sl(Ti) + 1

2

∣∣∣∣ .
In fact, we have verified that all smooth knots with crossing number 5 or less have a

maximum self-linking number transverse representative that satisfy Ut−1(T ) = |(sl(T ) + 1)/2|.
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As all smooth knots with crossing number 5 or less are transversely simple, if the smooth
knot has a maximum self-linking number m ≤ −3, we can apply Corollary 6.6 to find the
transverse unknotting number for any transverse knot in that smooth knot type. Refer to
the knot atlas in [4] for information on the maximum self-linking number of knots.

7. Transverse Family Tree

Recall that for a smooth knot K1 to be an ancestor of K2, the knot K2 should be obtained
from a minimal crossing diagram of K1 by some number of crossing changes. We now adapt
this ancestor-descendant relationship in smooth knots to study transverse knots.

Definition 7.1. A sequence of transverse knots (T1, T2, . . . , Tn) is a transverse family
tree if each Ti+1 can be obtained from Ti by a single transverse crossing change. A trans-
verse family is maximal if each Ti has maximal self-linking number in its knot type. A
transverse family tree is increasing if the self-linking numbers of Ti are strictly increasing
and decreasing if the self-linking numbers are strictly decreasing.

Lemma 7.2. If (T1, T2, . . . , Tn) is a transverse family tree, then (Tn, . . . , T2, T1) is a trans-
verse family tree. Furthermore, (T1, T2, . . . , Tn) is maximal if and only if (Tn, . . . , T2, T1) is
maximal. Finally, (T1, T2, . . . , Tn) is increasing if and only if (Tn, . . . , T2, T1) is decreasing,
and similarly, (T1, T2, . . . , Tn) is decreasing if and only if (Tn, . . . , T2, T1) is increasing.

Proof. Assume that (T1, T2, . . . , Tn) is a transverse family tree. By definition, each Ti+1 can
be obtained from Ti by a single transverse crossing change. This implies that each Ti can
be obtained from Ti+1 by a single transverse crossing change too. Hence, (Tn, . . . , T2, T1) is
also a transverse family tree.

Next, suppose that (T1, T2, . . . , Tn) is maximal. By definition, each Ti has maximal self-
linking number in its knot type. Since (T1, T2, . . . , Tn) is comprised of the same Ti, it follows
that (T1, T2, . . . , Tn) is also maximal by definition. The proof for opposite “if” direction
follows in the same way.

Now assume that (T1, T2, . . . , Tn) is increasing. By definition, the self-linking numbers of Ti
are strictly increasing. Then, it follows that the self-linking numbers of Ti in (Tn, . . . , T2, T1)
are strictly decreasing. Hence, (Tn, . . . , T2, T1) is decreasing. The proof for the opposite “if”
direction follows in the same way. We can also prove in a similar way that (T1, T2, . . . , Tn)
is decreasing if and only if (Tn, . . . , T2, T1) is increasing. �

Lemma 7.3. Given any smooth knot types K1 and K2, there exists a transverse family tree
(T1, . . . , T2) where T1 is in the knot type K1 and T2 is in the knot type K2. Moreover, we
can assume that T1 and T2 have maximum self-linking numbers (but not that all knots in
the tree have maximum self-linking number).

Proof. By Theorem 5.1, we know that every smooth knot has a transverse representative
that can be unknotted. Take such transverse representatives of both K1 and K2, respectively
called T1 and T2. We can then take the knot shadow of the composite knot T1#T2. The
argument follows in a similar way to the proof of Lemma 2.10. We first choose the crossings
on the shadow of T1#T2 so that we have T1, and then transversely change crossings so that
we have T2. This process guarantees that we have a sequence of transverse knots (T1, . . . , T2)
where each Ti+1 can be obtained from Ti by a single transverse crossing change.

Let Tm be the maximum self-linking number transverse representative of K1 and Tn of K2.
According to Corollary 5.5, all transverse knots in the same smooth knot type are related
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by transverse crossing changes.Then, we can obtain Tm from T1 by some number of trans-
verse crossing changes and similarly, Tn from T2. Hence, there is exists a transverse family
tree (Tm, . . . , T1, . . . , T2, . . . , Tn) where Tm is the maximum self-linking number transverse
representative of K1 and Tn of K2. �

Now we will construct some transverse family trees of twist knots. Let Km denote a
twist knot, where m ≥ 1 is the number of right-handed half-twists, as shown in Figure 34
(A). Figure 34 (B) shows an an example of such twist knot: K2. Observe that K2 has two
right-handed half-twists at the bottom.

(a) A diagram of Km.
(b) A diagram of K2

Figure 34. Twist knots.

Theorem 7.4 (Twist Knot Transverse Family Trees).

(1) For any odd m ≥ 1, there exists a maximal decreasing transverse family tree
(Tm, Tm−2, . . . , T1), where Tj is a transverse representative of the twist knot Kj.

(2) For any even m ≥ 2, there exists a maximal decreasing transverse family tree
(Tm, Tm−2, . . . , T2), where Tj is a transverse representative of the twist knot Kj.

(3) There exists a transverse family tree (Tm, U, Tm−1, U, . . . , T1), where Tj is a transverse
representative of the twist knot Kj and U is a transverse unknot.

Before we prove Theorem 7.4, we first consider the following lemma:

Lemma 7.5. The transverse twist knots in Figure 35 have maximum self-linking number.

(a) Te (b) To

Figure 35. A transverse representative of Km (A) when m is even and (B)
when m is odd. We will call each knot Te and To respectively.
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Proof. By simple calculation of self-linking numbers for Te and To, we have sl(Te) = −1−m
and sl(To) = −4−m. We want to confirm that these are the maximum self-linking numbers
of Km when m is even and m is odd respectively.

Consider the diagram of a general twist knot Km in Figure 34 (A). Etnyre, Ng, and Vértesi
in [12] proved the following about Km when m ≥ 1. In general, Km is a transversely simple
knot type when m ≥ 1. Furthermore, the maximum self-linking number of Km is sl = −m−1
when m is even and sl = −m − 4 when m is odd. Hence, this confirms that the diagrams
Figure 35 are the maximum self-linking number transverse representative of Km. �

Now we begin the proof of Theorem 7.4:

Proof. (1) Consider a twist knot Km, where m ≥ 1 is odd. Let Tm be its maximum self-
linking number transverse representative. Because m is odd, Tm would look like the diagram
below in Figure 36 with m twist crossings.

Figure 36. Tm where m is odd.

Now we want to show that there exists a maximal, decreasing transverse family tree
(Tm, Tm−2, . . . , T1) where each Tj is a maximum self-linking number transverse representative
of the twist knot Kj. Observe that all twist crossings in Tm are negative crossings. For m ≥ 3,
there are (m− 1)/2 down-down crossings in the twist of Tm. Because these crossings are rigid,
there are only (m+ 1)/2 twist crossings in Tm that can be transversely changed.

Select a non-rigid twist crossing in Tm and transversely change it to a positive crossing.
We then perform a transverse Type II Reidemeister move on the twist, removing one positive
and one negative crossing, which leaves us with m− 2 twist crossings.

(a) (b)

Figure 37. Two valid versions of transverse Type II Reidemeister move.

We have thus produced a transverse representative of Km−2, namely Tm−2. In fact, Tm−2
has the maximum self-linking number, as sl(Tm−2) = (−4 −m) + 2 = −4 − (m − 2) is the
maximum self-linking number of Km−2 for odd m−2 according to Etnyre, Ng, and Vértesi’s
theorem in [12]. Thus, we have shown that Tm and Tm−2 are related by a transverse crossing
change, where Tm and Tm−2 are maximum self-linking number transverse representatives of
Km and Km−2 respectively.
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We can repeat the steps above to construct a maximal, decreasing transverse family tree
(Tm, Tm−2, . . . , T1) where each Tj is a transverse representative of the twist knot Kj.

(2) Consider a twist knot Km, where m ≥ 2 is even. Let Tm be its maximum self-linking
number transverse representative. Because m is even, Tm would look like the diagram below
in Figure 38 with m twist crossings.

Figure 38. Tm where m is even.

Now we want to show that there exists a maximal, decreasing transverse family tree
(Tm, Tm−2, . . . , T2) where each Tj is a maximum self-linking number transverse representative
of the twist knot Kj. Observe that all twist crossings in Tm are negative crossings. For m ≥ 2,
there are m/2 down-down crossings in the twist of Tm. Because these crossings are rigid, there
are only m/2 twist crossings in Tm that can be transversely changed.

Select a non-rigid twist crossing in Tm and transversely change it to a positive crossing.
We then perform a transverse Type II Reidemeister move on the twist, removing one positive
and one negative crossing, which leaves us with m− 2 twist crossings.

(a) (b)

Figure 39. Two valid versions of transverse Type II Reidemeister move.

We have thus produced a transverse representative of Km−2, namely Tm−2. In fact, Tm−2
has the maximum self-linking number, as sl(Tm−2) = (−1 −m) + 2 = −1 − (m − 2) is the
maximum self-linking number of Km−2 for even m−2 according to Etnyre, Ng, and Vértesi’s
theorem in [12]. Hence, we have shown that Tm and Tm−2 are related by a transverse crossing
change, where Tm and Tm−2 are maximum self-linking number transverse representatives of
Km and Km−2 respectively.

We can repeat the steps above to construct a maximal, decreasing transverse family tree
(Tm, Tm−2, . . . , T2) where each Tj is a transverse representative of the twist knot Kj.

(3) Consider a twist knot Km, where m ≥ 1. Let Tm be its maximum self-linking number
transverse representative, either in the form of Te or To in Figure 35 depending on the polarity
of m. Note that for both Te and To, the clasp crossings are non-rigid. We can select one
clasp crossing and transversely change it, which unknots the twist knot. Hence, we have
a transverse unknot, namely U . In the transverse unknot U , we then transversely change
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the remaining clasp crossing from Tm. Now we have a new knot that is produced by having
changed the two clasp crossings in Tm.

(a) when m is even (b) when m is odd

Figure 40. New knots produced by changing two clasp crossings in Tm.

The newly produced knot is a non-alternating twist knot. In fact, it is topologically the
twist knot Km−1, and thus we call this new transverse knot Tm−1. The topological move in
Figure 41 verifies this.

Figure 41. We can use this move to verify that changing the two clasp
crossings from Km topologically produces another twist knot Km−1.

Now take the maximum self-linking number transverse representative ofKm−1 that is in the
form of Te or To in Figure 35 depending on the polarity of m−1. Because Km−1 is transversely
simple, we can stabilize the maximum self-linking number transverse representative of Km−1
to produce Tm−1. We can then repeat the process of transversely changing a clasp crossing
to produce a transverse unknot and then transversely changing the remaining clasp crossing
in the transverse unknot to produce Tm−2, and so on.

Observe that it will always be the same transverse unknot U between different trans-
verse twist knots, as we alternate between changing positive clasp crossings to negative and
changing negative clasp crossings to positive depending on the polarity of the transverse
twist knot. A simple self-linking number calculation will also verify that it is the always the
same transverse unknot U .

In particular, sl(U) = sl(Tm)−2 if m is even and sl(U) = sl(Tm) + 2 if m is odd. Suppose
that m is even. The clasp crossings are both positive for an even twist knot. When we
change the clasp crossing to produce U , then, we turn a positive crossing to negative and
hence sl(U) = sl(Tm)−2. Now suppose that m is odd. The clasp crossings are both negative
for an odd twist knot. When we change the clasp crossing to produce U , then, we turn a
negative crossing to positive and hence sl(U) = sl(Tm) + 2.
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Hence, we can construct a transverse family tree (Tm, U, Tm−1, U, . . . , T1), where Tj is a
transverse representative of the twist knot Kj and U is a transverse unknot. �

Now we will construct some transverse family trees of torus knots. In general, a (m,n)-
torus knot is obtained by winding a string n times around a circle in the interior of the torus
and m times around its axis of rotational symmetry, where m and n are relatively prime. A
(m,n)-torus knot is equivalent to a (n,m)-torus knot. In this section, we use Km,n to denote
a (m,n)-torus knot and have the strands form a right-handed twist for m,n > 0.

Theorem 7.6 ((2, p)-Torus Knot Transverse Family Trees).

(1) For all odd p ≥ 3, there exists a maximal decreasing transverse family tree
(T2,p, T2,p−2, . . . , T2,3), where T2,j is a transverse representative of the torus knot K2,j.

(2) For all odd n ≤ −3, there exists a maximal increasing transverse family tree
(T2,n, T2,n+2, . . . , T2,−3), where T2,j is a transverse representative of torus knot K2,j.

Before we prove Theorem 7.6, we first consider the following lemma:

Lemma 7.7. The transverse torus knots in Figure 42 have maximum self-linking number.

Figure 42. A transverse representative of a torus knot K2,p where p is odd,
(a) when p is positive and (b) when p is negative. We will call each knot T+
and T− respectively.

Proof. By simple calculation of self-linking numbers for T+ and T−, we have sl(T+) = −2+p
and sl(T−) = −2 + p. We want to confirm that this really is the maximum self-linking
number of K2,p when p is positive and negative respectively.

According to Etnyre and Honda in [10], torus knots are transversely simple and the max-
imum self-linking number of a torus knot type is sl(Km,n) = mn−m− n. Applying this to
K2,p, we have that sl(K2,p) = 2p− 2− p = p− 2 = −2 + p. Hence, this confirms that T+ and
T− in Figure 42 are the maximum self-linking number transverse representatives of K2,p. �

Now we begin the proof of Theorem 7.6.

Proof. (1) Consider a torus knot K2,p where p ≥ 3 is odd. Let T2,p be its maximal self-linking
number transverse representative. Because p is positive, T2,p would look like the diagram
below in Figure 43 with p positive crossings in the middle.
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Figure 43. T2,p where p is positive.

Now we will construct a maximal, decreasing transverse family tree (T2,p, T2,p−2, . . . , T2,3),
where each T2,j is a transverse representative of the torus knot K2,j.

Observe that all non-trivial loop crossings in the middle of T2,p are non-rigid and positive,
so we can make transverse crossing changes on them. Select any crossing from the middle of
T2,p and transversely change the crossing from positive to negative. This enables to perform
a transverse Type II Reidemeister move to remove a pair of crossings, one positive and one
negative.

(a) (b)

Figure 44. Two valid versions of transverse Type II Reidemeister move.

This leaves us with p−2 crossings in the middle. Observe that the newly produced knot is
still in the form of T+ in Figure 42 with p− 2 positive crossings in the middle. This implies
that the newly produced transverse knot is T2,p−2, a transverse representative of K2,p−2. We
want to verify that T2,p−2 has the maximum self-linking number. Our previous transverse
crossing change implies that sl(T2,p−2) = (−2+p)−2 = −2+(p−2), which is the maximum
self-linking number of K2,p−2 according to Etnyre and Honda in [10]. Hence, we have shown
that T2,p and T2,p−2 are related by a transverse crossing change, where T2,p and T2,p−2 are
maximum self-linking number transverse representatives of K2,p and K2,p−2 respectively.

We can repeat the steps above to produce a series of maximum self-linking number trans-
verse torus knots, and the self-linking numbers are strictly decreasing by 2. Hence, we can
construct a maximal, decreasing transverse family tree (T2,p, T2,p−2, . . . , T2,3), where each T2,j
is a transverse representative of the torus knot K2,j.

(2) Consider a torus knot K2,n where n ≤ −3 is odd. Let T2,n be its maximal self-linking
number transverse representative. Because n is negative, T2,n would look like the diagram
below in Figure 45 with |n| negative crossings in the middle.
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Figure 45. T2,n where n is negative.

We want to construct a maximal, increasing transverse family tree (T2,n, T2,n+2, . . . , T2,−3),
where each T2,j is a transverse representative of the torus knot K2,j.

Observe that all non-trivial loop crossings in the middle of T2,n are non-rigid and negative,
so we can make transverse crossing changes on them. Select any crossing from the middle of
T2,n and transversely change the crossing from negative to positive. This enables to perform
a transverse Type II Reidemeister move as shown in Figure 44 to remove a pair of crossings,
one positive and one negative.

This leaves us with |n+ 2| negative crossings in the middle of the knot. Observe that the
newly produced knot is still in the form of T− in Figure 42 with |n+ 2| negative crossings
in the middle. This implies that the newly produced transverse knot is T2,n+2, a transverse
representative of K2,n+2. We now want to verify that T2,n+2 has the maximum self-linking
number. Our previous transverse crossing change implies that sl(T2,n+2) = (−2 + n) + 2 =
−2 + (n+ 2), which is the maximum self-linking number of K2,n+2 according to Etnyre and
Honda in [10]. Hence, we have shown that T2,n and T2,n+2 are related by a transverse crossing
change, where T2,n and T2,n+2 are maximum self-linking number transverse representatives
of K2,n and K2,n+2 respectively.

We can repeat the steps above to produce a series of maximum self-linking number trans-
verse torus knots, and the self-linking numbers are strictly increasing by 2. Hence, we can
construct a maximal, increasing transverse family tree (T2,n, T2,n+2, . . . , T2,−3), where each
T2,j is a transverse representative of the torus knot K2,j. �

Corollary 7.8. For all odd p1, p2, there exists a transverse family tree (T2,p1 , . . . , T2,p2). If
p1 and p2 have the same sign, there exists a maximal, monotonic transverse tree. If p1 and
p2 have opposite signs, then there exists a monotonic transverse family tree that contains a
non-maximum self-linking number transverse unknot, but all others in the family tree are
maximum self-linking number transverse representatives.

Proof. By Theorem 7.6, we know that if p1 and p2 have the same sign, there exists a maximal,
monotonic transverse family tree that contains only transverse torus knots.

Suppose that p1 and p2 have opposite signs. For the sake of convenience, we assume
that p1 is positive and p2 is negative. Then, there exists a maximal transverse family tree
(T2,p1 , T2,p1−2 . . . , T2,3) and (T2,p2 , T2,p2+2, . . . , T2,−3) by Theorem 7.6. Then, it suffices to
show that there is a monotonic transverse family tree between T2,3 and T2,−3 that contains
a non-maximum self-linking number transverse unknot to complete the proof.
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Figure 46. T2,3.

Start with a diagram of T2,3. As T2,3 has the maximum self-linking number sl(T2,3) = 1,
we have the diagram in Figure 46. Transversely change one of the non-trivial loop crossings
in the middle of T2,3, turning a positive crossing into negative. We can now perform a
transverse Type II Reidemeister move as shown in Figure 44 to remove a pair of crossings,
one positive and one negative, resulting in a diagram in Figure 47.

Figure 47. T2,1.

We name this new transverse knot T2,1. In fact, T2,1 is topologically an unknot, and we
have sl(T2,1) = 1− 2 = −1 as we changed a positive crossing to a negative crossing in T2,3.
This is the maximum self-linking number of the unknot. We then transversely change the
remaining positive crossing, and now we have T2,−1 as shown below in Figure 48.

Figure 48. T2,−1.

This is also topologically an unknot, but now we have sl(T2,−1) = −1− 2 = −3. We can
then perform a transverse Type II Reidemeister move as shown in Figure 49 to add a pair
of crossings, one positive and one negative.
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(a) (b)

Figure 49. Two valid versions of transverse Type II Reidemeister move.

Finally, transversely change the newly added positive crossing to negative, so that we
produce T2,−3, as shown below in Figure 50, and sl(T2,−3) = −3− 2 = −5, as desired.

Figure 50. T2,−3.

From the steps above, we have created a transverse family tree (T2,3, T2,1, T2,−1, T2,−3) where
T2,1 is a transverse unknot with sl = −1 and T2,−1 is a transverse unknot with sl = −3.
Observe that this process, similar to the one in proof of Theorem 7.6, guarantees that the
transverse twist knots T2,3 and T2,−3 have the maximum self-linking number. Note also that
this new transverse family tree is decreasing.

Using Lemma 7.2, we can now rearrange and combine the maximal transverse family
trees (T2,p1 , T2,p1−2 . . . , T2,3) and (T2,p2 , T2,p2+2, . . . , T2,−3) with this new transverse family
tree (T2,3, T2,1, T2,−1, T2,−3). Hence, we have (T2,p2 , . . . , T2,−3, T2,−1, T2,1, T2,3, . . . , T2,p1), and
this transverse family tree is increasing. Observe also that all transverse knots except the
transverse unknot T2,−1 have maximum self-linking numbers. Hence, if p1 and p2 have oppo-
site signs, then there exists a monotonic transverse family tree that contains a non-maximum
self-linking number transverse unknot, but all others in the transverse family tree are maxi-
mum self-linking number transverse representatives.

Combing the cases when p1 and p2 have same signs and when p1 and p2 have different signs,
we conclude that for all odd p1, p2, there exists a transverse family tree (T2,p1 , . . . , T2,p2). �
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12. J. Etnyre, L. Ng, and V. Vértesi, Legendrian and transverse twist knots, Journal of the European

Mathematical Society (2010).
13. D. Fuchs and S. Tabachnikov, Invariants of legendrian and transverse knots in the standard contact

space, Topology (1997).
14. C. Livingston and A. H. Moore, Knotinfo: Table of link invariants, http://www.indiana.edu/

~knotinfo.
15. J. Swiatkowski, On the isotopy of legendrian knots, Annals of Global Analysis and Geometry (1992).
16. L. Traynor, An introduction to the world of legendrian and transverse knots, Knot Encyclopedia, to

appear.

http://www.indiana.edu/~knotinfo
http://www.indiana.edu/~knotinfo

	1. Introduction
	2. Smooth Knots
	3. Transverse Knots
	4. Crossing Changes in Transverse Knots
	5. Transverse Unknotting
	6. Transverse Unknotting Number
	7. Transverse Family Tree
	References

