Locally Contractive Maps on Perfect Polish Ultrametric Spaces

Francis George

February 13, 2015

Abstract

In this paper we present a result concerning locally contractive maps defined on subsets of perfect Polish ultrametric spaces (i.e. separable complete ultrametric spaces). Specifically, we show that a perfect compact ultrametric space cannot be contained in its locally contractive image, a corollary relating this result to minimal dynamical systems, and pose a conjecture for the general Polish ultrametric case.

1 Preliminaries

A topological space X is completely metrizable if X admits a compatible complete metric d, and separable if X contains a countable dense subset. A Polish space is a separable completely metrizable topological space. Likewise, a metric space that is both separable and complete we will call a Polish metric space. Alexander Kechris provides a thorough treatment of Polish spaces in [4] section 3 p.13, and we follow the notation contained in this reference for the majority of the paper.

This paper focuses on a particular subclass of Polish spaces, namely perfect Polish ultrametric spaces. A topological space is perfect if and only if it contains no isolated points.

Definition 1.1. A metric space (X, d) is an ultrametric space if and only if d has the property that for all $x, y \in X$, $d(x, y) \leq \max\{d(x, z), d(y, z)\}$. In this case we call d an ultrametric.
Locally Contractive Maps on Perfect Polish Ultrametric Spaces

Briefly, the diameter of a set A, will be denoted $\text{diam}(A)$, where $\text{diam}(A) = \sup\{d(x, y) : x, y \in A\}$. The following are some fundamental facts about ultrametric spaces which we will state without proof, see [7] p.58, [4] p.35.

Proposition 1.2. For an ultrametric space (X, d) and ball $B(x, r) \subseteq X$ with center x and radius r, the following holds for all $x, y, z \in X$ and nonempty $Y \subseteq X$,

(i) $d(x, z) \neq d(y, z)$, implies $d(x, y) = \max\{d(x, z), d(y, z)\}$,
(ii) All balls are clopen sets,
(iii) If two balls meet, then one is contained in the other,
(iv) If $y \in B(x, r)$, then $B(x, r) = B(y, r)$,
(v) If $a \in Y$, then $\text{diam}(Y) = \sup\{d(a, b) : b \in Y\}$.

Recall that a topological space X is zero-dimensional if and only if X is Hausdorff and has a basis consisting of clopen sets. Therefore, any Polish space that admits a compatible ultrametric is zero-dimensional, see [4] 7.1.

Some examples of zero-dimensional spaces that admit a ultrametric compatible with their usual topology are the p-adic numbers \mathbb{Q}_p, the Cantor Space 2^ω, the Baire Space ω^ω.

A Lipschitz function possesses a stronger form of continuity, which is defined below.

Definition 1.3. For metric space (X, d), a function $f : X \rightarrow X$ is Lipschitz if and only if there is some constant $\alpha \geq 0$ such that $d(f(x), f(y)) \leq \alpha d(x, y)$ for all $x, y \in X$. If $0 < \alpha < 1$, then f is a contractive map.

There exist other definitions for contractive functions in the mathematical literature. For the interested reader, a thorough comparison of various definitions for contractive maps was initiated by B.E. Rhoades see [6]. But, for the purposes of this paper we have chosen a commonly used definition. In particular, this definition of a contractive map is fundamental to the Banach Fixed Point Theorem, a theorem of Analysis, also known as the Banach Contraction Principle [2].

A neighborhood (nbhd) of x, denoted N_x, is an open set containing the point x of a topological space X.

Definition 1.4. Let (X, d) be a metric space. Then a map $f : X \rightarrow X$ is a locally contractive map, if and only if for each $x \in X$, there exists a $N_x \subseteq X$ such that for some $\alpha_x \in (0, 1), d(f(u), f(v)) \leq \alpha_x d(u, v)$ for all $u, v \in N_x$. 2
For clarity and convenience, we will introduce the definition of an \(f \)-contractive nbhd.

Definition 1.5. Let \((X, d)\) be a metric space, \(f : X \to X\) a locally contractive map, and let \(N_x \subseteq X\) be a nbhd of \(x\) for some \(x \in X\). Then \(N_x\) is an \(f \)-contractive nbhd of \(x\), if and only if for some \(\alpha_x \in (0, 1)\) we have for all \(u, v \in N_x\), \(d(f(u), f(v)) \leq \alpha_x d(u, v)\).

Our next lemma demonstrates the effect a locally contractive map \(f\) has on compact sets contained within an \(f \)-contractive nbhd.

Lemma 1.6. Let \((X, d)\) be a perfect Polish metric space, let \(f : X \to X\) be a locally contractive map, and \(N \subseteq X\) be an \(f \)-contractive nbhd. Then, for any compact set \(K \subseteq N\) containing at least two distinct elements and for some \(\alpha \in (0, 1)\), \(\text{diam}(f[K]) \leq \alpha \text{diam}(K)\).

Proof. Let \(X\) be a perfect Polish metric space, and let \(f : X \to X\) be a locally contractive map. Also, let \(N \subseteq X\) be an \(f \)-contractive nbhd and let \(K \subseteq N\) be compact. By Definition 1.5 we know there exists an \(\alpha \in (0, 1)\) such that for all \(u, v \in N\), \(d(f(u), f(v)) \leq \alpha d(u, v)\). Since \(f[K]\) is compact, by the continuity of \(f\), it follows that \(\text{diam}(K) = d(x_1, x_2)\) for some \(x_1, x_2 \in K\) and \(\text{diam}(f[K]) = d(f(y_1), f(y_2))\) for some \(y_1, y_2 \in K\). So, since \(K \subseteq N\), we have that \(d(f(y_1)), f(y_2)) \leq \alpha d(y_1, y_2) \leq \alpha d(x_1, x_2)\). Therefore,

\[
\text{diam}(f[K]) \leq \alpha \text{diam}(K).
\]

\[\square\]

We will now state a useful fact without proof (see W. H. Schikhof [7] p.48-49).

Theorem 1.7 (W. H. Schikhof). Let \((X, d)\) be an ultrametric space. If \(U \subseteq X\) is a nonempty open set, then \(U\) can be partitioned into balls.

We now package Theorem 1.7 into a form more convenient for use in the proofs to follow, and note that compact metric spaces are necessarily Polish.

Lemma 1.8. Let \((X, d)\) be a perfect Polish ultrametric space, and let \(f : X \to X\) be a locally contractive map. Then there exists a finite partition of \(X\) into \(f\)-contractive balls.
Proof. (Sketch) Let \((X, d)\) be a perfect compact ultrametric space, and let \(f : X \to X\) be a locally contractive map. Let \(\mathcal{N}_f\) be a collection of \(f\)-contractive nbhds corresponding to each \(x \in X\). This collection forms an open cover of \(X\), and by compactness can be assumed to be finite. By Theorem 1.7 we can create a partition of each nbhd in \(\mathcal{N}_f\) into balls, and again by compactness each of these partitions can be assumed to be finite. Thus, by ultrametric property 1.2 (iii) it is easy to see that we can form a finite partition of \(X\) into \(f\)-contractive balls.

2 Main Results

The proof of our main theorem relies upon the concept of a generalized tree or \(R\)-Tree introduced by Gao and Shao [3]. Which generalize the concept of a descriptive set-theoretic tree on \(\omega\) (see Section 2 Chapter 1 [4]), by allowing the tree’s level or depth to be indexed by any countable set \(R\) with limit point 0 instead of just by \(\omega\). This is done through the introduction of a distance set for a metric space \((X, d)\), that is the set \(R = \{d(x, y) : x \neq y \in X\}\).

Distance sets of separable ultrametric spaces are countable, see J. D. Clemens [1] and C. Shao [8]. The set \(\mathbb{R}_+\) denotes the set of non-negative real numbers.

Definition 2.1 (Gao and Shao [3]). For countable \(R \subseteq \mathbb{R}_+\), \((X, d)\) is an \(R\)-ultrametric space if \(\{d(x, y) : x \neq y \in X\} \subseteq R\).

For the remainder of this section, unless otherwise specified, fix \(R \subseteq \mathbb{R}_+\) to be countable with \(0 \in R'\), where \(R'\) denotes the set of all limit points of \(R\).

Definition 2.2 (Gao and Shao [3]). Let \(\omega^{<R}\) denote the set of all functions.

\[u : [a, +\infty) \cap R \to \omega \]

where \(a \in R\), such that the set

\[\text{supp}(u) = \{b \in R \cap [a, +\infty) : u(b) \neq 0\} \]

is finite. We call \((\omega^{<R}, \subseteq)\) the full \(R\)-tree.

For some \(b \in \text{dom}(u)\), we denote \(u \upharpoonright b\) the function \(u \upharpoonright ([b, +\infty) \cap R) \in \omega^{<R}\). For \(u, v \in \omega^{<R}\), \(u\) is an initial segment of \(v\), denoted \(u \subseteq v\), if there
exists $b \in \text{dom}(v)$ s.t. $u = v \upharpoonright b$. For every $u \in \omega^<R$ the level or depth of u is defined by $l(u) = \inf \text{dom}(u) = \min \text{dom}(u)$. For $T \subseteq \omega^<R$, if $v \in T$ and $u \subseteq v$ implies $u \in T$, then we call T an R-tree, and T is pruned if for all $u \in T$, there exists a proper extension v of u. A branch of T is a function $f \in \omega^R$ such that for all $a \in R$, $f \upharpoonright a = f \upharpoonright ([a, +\infty) \cap R) \in T$, and $u \subseteq f$ if $u = f \upharpoonright a$. We will let $[T]$ denote the set of all branches, also known as the end space or body of T, (Gao and Shao [3]).

Definition 2.3 (Gao and Shao [3]). Let T be an R-tree. Define a metric on $[T]$ by

$$d(f, g) = \begin{cases} 0, & f = g \\ \max\{a \in R : f(a) \neq g(a)\}, & \text{otherwise} \end{cases}$$

Theorem 2.4 (Gao and Shao [3]). $([T], d)$ is a Polish R-ultrametric space.

Theorem 2.5 (Gao and Shao [3]). For any Polish R-ultrametric space (X, ρ) there is a R-tree T such that (X, ρ) is isometric to $([T], d)$.

Definition 2.6 (Gao and Shao [3]). For any $u \in \omega^<R$ define

$$N_u = \{f \in [\omega^<R] : u \subseteq f\}$$

We see above that any branch of an R-tree T restricted to any element of T. Together with the fact that for any perfect compact R-ultrametric space X the set containing all $u \in T$ where $l(u) = r$ for some $r \in R$ is finite (see p.500 [3]), we show the existence of at least one uniform diameter finite partition of X into balls, where uniform diameter is meant in the sense that each ball is of equal diameter. Briefly, for any R-tree T and $u, v \in T$ if $u \subseteq v$ or $v \subseteq u$ we will call u and v compatible, and if this is not the case, incompatible, which we will denote by $u \perp v$. Also, it is easy to show that if $u \perp v$, then $N_u \cap N_v = \emptyset$.

Lemma 2.7. Let (X, ρ) be a perfect compact R-ultrametric space. If $R \subseteq \mathbb{R}_+$ is countable and with $R' \ni 0$, then (X, d) has a uniform diameter partition for each $r \in R$ such that for any finite cover \mathcal{B} there exists $B_0 \in \mathcal{B}$ where $\text{diam}(B_0) = r$ and $\text{diam}(B_0) \leq \text{diam}(B)$ for all $B \in \mathcal{B}$.

Proof. Since R is countable and $R' \ni 0$ there exists an R-tree T such that exists isometry $\sigma : X \rightarrow [T]$. Clearly, $([T], d)$ is an infinite compact ultrametric space. Therefore, we can refine any cover of $[T]$ to a finite partition.
{N_{u_i} : i < n} where each u_i ∈ T for some n < ω. Without loss of generality, we can assume this partition is ordered in a non-decreasing fashion with respect to level, and thus label l_0 = l(u_0).

Notice, since the set \{u ∈ T : l(u) = l_0\} is finite it follows that the set \(V = \{u, v ∈ T : l(u) = l(v) = l_0 & u \perp v\}\) is finite. Then it follows that the collection \(\mathcal{G} = \{N_u : u ∈ V\}\) is a finite partition of \([T]\), and thus its easy to see, through use of our isometry \(σ\), that there exists a finite partition \(\mathcal{B}\) with the desired properties.

The following result by John D. Clemens is helpful in our next theorem.

Theorem 2.8 (J. D. Clemens [1]). A set \(A ⊆ [0, ∞)\) is a set of distances of some perfect, compact, ultrametric space if and only if \(A\) can be enumerated as a countable decreasing sequence \(⟨d_i : i ≤ 0⟩\) with \(\lim_{i→∞} d_i = 0\).

Now we are ready to present the proof of our main theorem.

Theorem 2.9. Let \((X, ρ)\) be a nonempty perfect Polish ultrametric space. If \(X\) is compact, then any locally contractive map \(φ : X → X\) is necessarily not surjective.

Proof. Let \((X, ρ)\) be a perfect compact Polish ultrametric space. Let \(R ⊆ \mathbb{R}_+\) such that \(R = \{ρ(x, y) : x ≠ y ∈ X\}\). Since this is the distance set to a compact perfect ultrametric space, we see by 2.8 that \(R\) can be enumerated as a strictly decreasing sequence \(⟨r_j : j ≥ 0⟩\) and \(\lim_{j→∞} r_j = 0\).

Since \(R\) is countable and \(R' ∋ 0\), then by Theorem 2.5 since \(X\) is an Polish \(R\)-ultrametric space there exists an unique pruned \(R\)-tree \(T\) such that \((X, ρ)\) is isometric to \(([T], d)\). So, let \(σ : X → [T]\) be an isometry, and define \(τ = σ \circ φ \circ σ^{-1} : [T] → [T]\). It is easy to see that \(τ\) is locally contractive. Thus, it suffices to show that \(τ\) is not surjective.

By Lemma 1.8 we have a finite partition \(\{N_{u_i} : i < n\}\) of \(τ\)-contractive balls. We may assume that \(l(u_i) ≤ l(u_j)\) whenever \(i ≤ j\). Label \(l_0 = l(u_0)\) (i.e. the lowest level nbhd). Now for each \(i < n\), let \(\{v^k_i : k < s_i\}\) be the set of all incompatible extensions of \(u_i\) with \(l(v^k_i) = l_0\), which we know is possible by Lemma 2.7.

So, \(\text{diam } N_{u^k_i} = r_t\) for some \(t < ω\) and \(\text{diam } τ[N_{u^k_i}] ≤ r_{t+1} < r_t\) for all \(i < n\) and \(k < s_i\).

Notice for all \(i < n\), \(τ[N_{u^k_i}]\) is contained in some ball \(B^k_i\) where \(\text{diam } B^k_i ≤ r_{t+1}\), and hence by Proposition 1.2 (iii)

\[τ[N_{u^k_i}] ⊆ B^k_i \subset N_{v^k_i} \]
for some $i' < n$ and $k' < s_i$.

Since, $\{N_{s_i^k} : i < n \& k < s_i\}$ is a finite partition of $[T]$ it is easy to see that $\tau[[T]] \not\subseteq [T]$.

Below are some corollaries related to the above result. The generic element of a set has a particular property if and only if the set of all elements with this property forms a comeager subset (i.e. a subset which is the complement of a countable union of nowhere dense subsets). The hyperspace of compact sets denoted $K(X)$ of a topological space X equipped with the Vietoris Topology which is generated by the sets,

$$\{K \in X : K \subseteq U\}, \{K \in X : K \cap U \neq \emptyset\},$$

where U is open in X. It is well known that for a perfect Polish space X the hyperspace $K(X)$ is a Baire Space (see [4] p.41), which allows us to take advantage of implications of the Baire Category Theorem. So, from [4] page 42 we see that the set $K_p(X) = \{K \in K(X) : K \text{ is perfect} \}$ is dense G_δ, since X is perfect Polish. Thus, since $K(X)$ is a Baire space, $K_p(X)$ is comeager, and therefore we see that the generic compact subset of a perfect Polish space is perfect. So, recalling the above theorem, since all locally contractive self-maps defined on a perfect compact ultrametric space are not surjective, then the generic compact set of a perfect Polish ultrametric space has this property, which is stated as a corollary below.

Corollary 2.10. Let (X, d) be a perfect Polish ultrametric space. Then for generic compact $K \subseteq X$ and locally contractive map $\varphi : K \to K$, $K \not\subseteq \varphi[K]$.

Now leading toward a original motivation of the study of this phenomena concerning locally contractive maps, we state the following corollary related to topological dynamical systems, which is a pair $\langle X, \varphi \rangle$, where X is a closed topological space, and $\varphi : X \to X$ is a continuous map. A set $E \subseteq X$ is φ-invariant, if $\varphi(E) \subseteq E$. A topological dynamical system $\langle X, \varphi \rangle$ is minimal if and only if X contains no nonempty closed proper φ-invariant sets, and in this case φ is called a minimal map. Observe, that if φ is a minimal map and X is compact Hausdorff, then φ is surjective (see S. Kolyada and L. Snoha [5]), and from this, the subsequent corollary follows.

Corollary 2.11. If (X, d) is a perfect compact ultrametric space and $\langle X, \varphi \rangle$ is a topological dynamical system with $\varphi : X \to X$ locally contractive, then $\langle X, \varphi \rangle$ is not minimal.
3 General Polish Ultrametric Case

Briefly, considering the general Polish ultrametric case as a whole, it should be noted that any finite space (ultrametric or not) is necessarily discrete and thus there exists a trivial locally contractive map (i.e. the identity map). Thus, it suffices for us to consider infinite spaces only. Also, related to the ability to employ an R-tree in this characterization, any Polish R-ultrametric space such that R' does not contain 0 is necessarily a countable discrete space (see p.17 and Remark 3.5 p.88 [8]), and thus the identity map again can be used. So, together with the fact that for any Polish ultrametric space R is countable, we can assume that there exists an R-tree with end space isometric to the Polish spaces we are considering, and motivated by this, the following conjecture is posed.

Conjecture 3.1. Let (X, ρ) be an infinite Polish ultrametric space. Then X is compact if and only if any locally contractive map $\varphi : X \rightarrow X$ is necessarily not surjective.

References

Locally Contractive Maps on Perfect Polish Ultrametric Spaces