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Abstract. Given a continuous sensor field, we can apply the Euler characteristic integral ap-

proach to count the number of targets in the sensor field. If the sensor field is discrete, the Euler
integral approach introduces errors into our target count. In this paper, we study the behavior

of the Euler integral when applied to discrete sensor fields. Under precise assumptions, we count

the number of first- and second-order errors in target count, and discover a formula proportional
to much higher order errors. This allows us to derive a point estimator for the number of targets

in a discrete sensor field. Finally we derive an asymptotic result, providing insight into how the

discrete Euler integral behaves for a large number of targets.

1. Introduction

A sensor field is a collection of sensors. Imagine a planar sensor field that is infinitely dense,
with infinitesimally small sensors. At each point in our sensor field, there is a sensor which records
simply the number of objects directly over it. Then, throw many objects of any shape onto this
field. We require that the two-dimensional projection of each object be a compact connected set.
We also require that all of the two-dimensional projections contain the same number of holes. We
also require that the number of holes in the two-dimensional projections cannot be equal to one
(so the annulus is not allowed). If this is the case, then according to the seminal work of Yuliy
Baryshnikov and Robert Ghrist [1, 2], the number of objects (or targets) can be exactly determined
using nothing but the sensor field data recorded, i.e. the location of each sensor and how many
objects overhead it detects. This concept of counting the number of holes in the two-dimensional
projection is captured by the idea of the geometric Euler characteristic [1].

If the sensor field is discrete and not of infinite sensor density the above method can be applied to
this target enumeration problem, but it will only give an estimate. The most obvious error occurs
when two targets do not overlap, but there is no sensor in between them to differentiate the two
targets from one another. In this case, the two targets instead appear to be one large target (see
Figure 1). No algorithm could detect two targets here unless information on the targets’ shapes is
given.

This paper provides numerical analysis of the target enumeration via Euler characteristic integral
technique given by Baryshnikov and Ghrist [1, 2]. In particular, we examine different sources of error
when our sensor field is discretized and determine how to account for them. We begin by analyzing
the causes of the most common first order (Section 2.4) and second order errors (Section 2.5) in
target enumeration when the sensor field is discretized. The probabilities of these different errors
appearing, under the assumption that the targets’ two-dimensional projections are disk shaped
and targets fall onto the sensor field under a discrete uniform distribution, are estimated using
combinatorial arguments. We then derive an asymptotic result showing how the Euler characteristic
integral behaves for large numbers of targets (Theorem 2.5). Finally, we find that our second order
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Black = target

Gray lines = boundaries 
of sensor supports

Gray region = tangency 
between targets 

Figure 1. Example of a sensor grid. The union of each sensor’s 1× 1 area makes
up the entire field. When two targets are almost tangent with no overlap but no
sensor in between, they become impossible to differentiate. The tangency above
(highlighted in gray) causes the two targets to appear as one.

error formula is proportional to much higher order errors, and use this knowledge to approximate
the number of targets resting in a sensor field (Section 2.7).
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1.1. A survey of the field. Tomorrow’s man will step into a world that is inundated with what
we today call “sensors.” Fields of sensors will count him as he steps onto the street, as he drives
his hover car, and when he steps onto the battlefield. Tiny sensors will precisely read his DNA.
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Figure 2. A visualization of the return of a typical discretized sensor grid, as will
be studied throughout this paper. This sensor grid is 200 × 500, and 100 disk-
shaped targets of radius 6 have been placed over it. A sensor with as many or
more targets over it then all other sensors is painted white, a sensor with no target
over it is painted black, and all other sensors are painted on a sliding scale between
white and black.

Other sensors will tirelessly count the pesticide molecules on his vegetables. Sensors of all sorts will
appear to read his mind, returning data to him just when he needs it. These same sensors will feed
smart algorithms working to improve traffic flow, crop development, and battlefield awareness [7].
But before this world can exist for our everyman to experience, much work needs to be done.

The study of sensor networks is nascent, and the fundamentals are still being developed. There
are many active research areas in this exciting new field. There are open problems related to
networking, communication, and the signal processing algorithms used to connect individual sensors
into working, collaborative sensor fields using minimal computing resources and energy ([4, 8, 9, 15],
amongst many others). Another important open problem is how to monitor and make sense of the
large amounts of data coming off real world sensor fields with broken and malfunctioning sensors
[20]. And finally, complete mathematical theories for target enumeration and tracking via fields of
sensors are just starting to be developed.

The problem of interest here is target enumeration: given the return of a sensor field, how best
to fuse the data from the individual sensors so as to count the total number of unique targets being
picked up by the sensor field.

Much of the current work in target enumeration or the closely related field of target tracking
[9, 11, 12] assumes targets are able to be easily differentiated from one another. However, a major
open problem is the complete target counting and tracking problem where targets are less easily
differentiated from one another and from their environment. Another application of this work might
be instances where we are not allowed to use identification because of privacy concerns.

Wo provide two specific examples of work that has been done. One example involves sensors
which return discrete target counts, and the other example involves sensors which return real-
valued target counts. The first example involves binary sensors, a type of discrete sensor. It has
been found that for any fixed time, not enough information is contained in a binary sensor field
to return an accurate estimate of the number of targets [19]. But by looking at time series data
through a particle filter, both target counts and target trajectories can be nicely approximated
under the weak assumption of relatively small changes in the target velocity vector moment to
moment. However, the techniques have so far only been developed in one space dimension and no
theoretical efficacy analysis has been done.

In contrast to discrete sensors are sensors which return real-valued target counts. An example
of this kind of sensor field is one where each sensor picks up a voltage related to the number of
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targets around that sensor, and the distances between the targets and the sensor. With this type of
sensor field, it is possible to count the number of targets sensed by counting the number of relative
maxima in the voltage data, when this data is thought of as a graph. However, current methods fail
when targets are insufficiently separated or are in other complex arrangements [8]. The authors in
[8] try to reduce errors by intelligently turning on and off sensors and carefully tracking the effects
of noise. They place approximate bounds on the expected errors in their methods, but again no
close analysis of how errors accumulate under their algorithms has been performed.

The seminal work to date on a solution to the problem of target enumeration has been done
by Y. Baryshnikov and R. Ghrist using the topological technique of the integral with respect
to the Euler characteristic [1, 2]. In the case of infinitely dense continuous sensor fields, their
breakthrough new theoretical framework is able to accurately count targets which are in very
complex configurations using sensors which return only local target counts. Further, the expected
Euler characteristic integral of a Gaussian random field has been worked out, which allows for
unbiased target enumeration from noisy sensor fields [3]. However, until now nothing more than
conjecture has existed concerning numerical analysis of the Euler characteristic integral when our
sensor field is discretized.

We begin here with a preliminary numerical analysis of the Euler characteristic integral as a
tool for target enumeration, picking up where Baryshnikov and Ghrist left off. We make precise
assumptions. Then, we derive expectations for the number of target counting errors in a discrete
sensor field when the enumeration via Euler characteristic integral theory is applied. We gain an
understanding into how different types of discretization errors occur in target counting. The result
is the only technique known to the author that gives an unbiased approximation to the number of
targets in a discrete sensor field returning only local target counts at each sensor.

1.2. Background. We present the main result we use in topological target enumeration. First,
we define some terminology. We think of our sensor field as a subset Ω of R2. The targets can
be thought of as being not point particles but two-dimensional laminae (subsets of the plane). A
sensor field, discrete or continuous, has a corresponding height function h(x) ∈ Z which at each
point x in the sensor field Ω returns the number of targets the sensor at x is detecting. Note that
even when the sensor field is discrete, its height function can still be thought of as coming from a
continuous sensor field.

Definition 1.1 (Excursion sets [1]). For an integer s, a topological space X and for a function
h : X → Z, the set {h = s} is the level set {x ∈ X : h(x) = s}, and the set {h > s} is the upper
excursion set {x ∈ X : h(x) > s}. Lower excursion sets are likewise defined.

Assume each target, thought of as a two-dimensional laminae, has Euler characteristic equal
to one. Then when the sensor field is continuous, the integral of its height function with respect
to Euler characteristic returns the number of targets in the sensor field. We calculate the Euler
characteristic integral using the duality formula derived by Ghrist and Baryshnikov:

Theorem 1.2 ([1, Theorem 4.3]). For h : R2 → N constructible and upper semicontinuous,∫
R2

h dχ =

∞∑
s=0

(β0{h > s} − β0{h ≤ s}+ 1),(1.1)

where β0 denotes the zeroth Betti number, or equivalently, the number of connected components of
the set.
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(a) Without zero-
padding,

∫
Ω
h dχ = 20

0

10

(b) With zero
padding,

∫
Ω
h dχ = 10

Figure 3. The Euler characteristic integrals of the returns of these two sensor
fields show the effect on the integral caused by zero-padding the sensor field data.

Constructible functions are “tame” and integer-valued on a topological space (for a quick intro-
duction, see [2]).

While not tested in this article, we expect (1.1) to be the most numerically stable of all equivalent
formulae [17].

2. Numerical Analysis

In this paper we study ideal discrete sensor fields, which are made up of a finite number of
sensors, all of which are assumed to be performing their function without error. The object of our
study are discrete sensor fields which are made up of collections of square sensors of dimension 1×1
which detect the number of targets above them without error. These sensors can also be thought
of as point particles with square sensing regions. The sensors are then arranged in regular grids
with no overlap or space among the sensing regions.

In this paper we will think of our sensor field as a subset Ω of R2, and we will work with the
following height function. Define a height function h on Ω such that for x in Ω not along the
boundary of any sensor’s sensing region, h(x) returns the total number of targets above that sensor
whose sensing region contains x. In our construction of an ideal discrete sensor field, there is no
sensing region along the boundaries of the sensor supports, and any target without width that lies
entirely along the boundaries of sensor supports will not be picked up by our sensor field. Then for
x in Ω along the boundary of a sensor support, we define h(x) such that its value agrees with the
value returned by the sensor underneath or to the left of x.

This discretization of the sensor field changes the basic behavior of the Euler characteristic
integral in two important ways, which we discuss in Section 2.1.

2.1. Finite field discretization errors. When using Theorem 1.2 to evaluate the Euler char-
acteristic integral over a bounded and connected region Ω ⊂ R2, we need to be careful because
the assumptions are not satisfied (Ω 6= R2). Suppose, for instance, the height function h = 10
throughout Ω, so that h never vanishes along ∂Ω. Then the calculated value of the integral using
Theorem 1.2 is 20. This differs from the correct value of 10 by a factor of 2 (see Figure 3). To
correct this error, we can zero-pad h by constructing a function g such that,

g(x) =

{
h(x) if x ∈ Ω

0 if x 6∈ Ω
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and then integrating g over R2 instead of h over Ω. For the rest of this paper, this correction is
always assumed to be made when working with finite, discrete sensor fields.

2.2. Linearity of the discrete Euler characteristic integral. Under discrete sensor fields,
linearity of the Euler characteristic integral (which is true [5] for continuous sensor fields) does not
hold. Take for instance two height functions (h1 and h2) each generated by sensor fields of four
sensors arranged in a square grid, where one small target is placed on each field. Then, with black
indicating function value of 1 and white indicating 0,

h1

+

h2

=

h1+h2
.

Note that
∫

Ω
h1 dχ = 1 and

∫
Ω
h2 dχ = 1, but

∫
Ω

(h1 + h2) dχ = 1 6= 1 + 1 = 2. Thus, over discrete
sensor fields the Euler characteristic integral is not a linear operator.

However, one particular instance of linearity still holds for discrete sensor fields.

Lemma 2.1. For any positive integer m,

∫
Ω

m∑
i=1

h dχ = m

∫
Ω

h dχ(2.1)

Proof. This is a result known [5] to hold over continuous sensor fields, but as seen above that does
not necessarily mean the result holds over discrete sensor fields. Thus we argue as follows to show
the result continues to hold over discrete sensor fields.

Note,

β0{mh > mk + i} = β0{h > k}(2.2)

β0{mh ≤ mk + i} = β0{h ≤ k}(2.3)

for all i = 0, 1, 2, . . . ,m− 1 and for all k = 0, 1, 2, 3 . . . . Then,

∫
Ω

m∑
i=1

h dχ =

∞∑
s=0

(β0{mh > s} − β0{mh ≤ s}+ 1)

=

m−1∑
i=0

∞∑
k=0

(β0{mh > mk + i} − β0{mh ≤ mk + i}+ 1)
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and then by (2.2) and (2.3),

=

m−1∑
i=0

∞∑
k=0

(β0{h > k} − β0{h ≤ k}+ 1)

= m

∞∑
k=0

(β0{h > k} − β0{h ≤ k}+ 1)

= m

∫
Ω

h dχ

which proves the statement. �

2.3. Analysis of target enumeration. The numerical properties of Theorem 1.2, as a point
estimator for target enumeration in discrete sensor fields, depend entirely on the magnitude, shape,
and distribution of the targets, as well as the setup of the sensor field. For example, the smaller
the targets, the less likely a tangency is to occur for a given sensor field size. We first consider tiny
targets, smaller than the individual sensor size. Given a large sensor field, the probability that two
of these tiny targets will appear tangent and cause an error is much smaller than when large disks
are being placed on a sensor field of the same size, as each large disk has a large perimeter to which
another target can come in contact. Noncircular objects have their own sets of problems. Imagine,
for instance, a star-shaped target and a disk-shaped target of similar magnitude: the disk has far
less perimeter, and cannot interact with other disks in the way a star could interact with other
stars. Moreover, the more uniformly spread out our targets, the less likely an error is to occur, in
contrast to all the targets being concentrated in a single part of our sensor region Ω. So, for our
analysis we will work under a few assumptions:

(1) The sensor field is a rectangular region, of height x and width y. The sensor field is made
up of a regular grid of xy sensors, each having a size of 1 × 1. The union of the sensors
gives us the complete sensor field.

(2) There are n targets, each of which are open disks of the same integer radius r ≤ 7. We avoid
the use of closed disks because they produce extraneous features when they are discretized,
and these features introduce new errors into the Euler characteristic integral (see Figure 4).

(3) Targets are discretely placed with integer center coordinates.
(4) Targets’ centers are uniformly distributed over our region.
(5) If a disk doesn’t land entirely in the sensor field, this is called an edge effect. To prevent

edge effects, targets’ centers are kept a minimum of r units away from the edge.

For a detailed analysis of discrete integer radius circles with integer centers (known as Freeman
digitizations) see [13].

We proceed with calculating the expectation of
∫
R2 h dχ when the integral is calculated using

Theorem 1.2, and the assumptions are as above. Throughout this paper, we define E(·) as the ex-
pectation function, and Pr(·) as the probability function. Define errors to be the (signed) difference
between n and the number of targets calculated using the Euler characteristic integral approach,
where if n is larger than the calculated number of targets, then there are positive errors. We let
En denote the expected number of errors in our target count when using the Euler characteristic
integral approach.

2.4. First order approximation. By “first order errors,” we mean, roughly, errors occurring with
probability proportional to the probability that any two particular disks are tangent.
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(a)

Discretized closed disk.

(b)

Discretized open disk.

Figure 4. A comparison of the difference between discretizing open and closed disks.

The goal in this section is to calculate the expected number of errors, to a first order approx-
imation, when using the Euler characteristic integral approach to estimate the number of targets
in a discrete sensor field. Our assumptions are as above: the sensor field is a rectangular region of
height x and width y. We place n disk-shaped targets down on our sensor field. Recall that En
denotes the expected value for the numbers of errors. A first order approximation of En would be
to count the expected number of tangencies amongst the targets, and take this as an estimate of
the error. Let Tij be the indicator function,

Tij =

{
1 if disk i is tangent to disk j

0 if disk i is not tangent to disk j

defined for all i, j = 1, 2, . . . , n with i 6= j. Then E (Tij) = Pr(Tij = 1). As the the locations of
the disks’ centers are independently and identically distributed, all tangencies occur with the same
probability.

For a fixed radius r, and a fixed sensor field region larger than 4r × 4r

(2.4) Pr(Tij = 1) =
Cr

(x− 2r + 2)(y − 2r + 2)
,

for all i, j = 1, 2, . . . , n with i 6= j, and where Cr is the average number of positions around one disk
where a tangent disk could be placed.. This follows because the disks’ centers are uniform random
variables, and only an area of (x− 2r + 2)(y − 2r + 2) is available for the centers to be placed.

By the assumptions above we are preventing edge effects, so in calculating Cr, we need to correct
for the fact that disks closer to the edge cannot have another disk placed to one side of them (see
Figure 5). The magnitude of this correction is most notable when placing radius r disks down on a
2r × 2r sensor field without edge effects: no matter now many disks are put down, as there is only
one location where the disks can fall, no tangencies will occur.

We calculate Cr. Assume our region is larger than 4r × 4r. At each of the points between r
and 3 · r from the edge, center a disk. For each disk calculate at how many points in our region
a tangent disk could be placed (call these tangency points). Then calculate the average number
of tangency points for a disk centered at one of these locations close to the edge. Then we can
calculate a weighted average representing the number of tangency points the average disk in our
region is expected to have (assuming disks are placed down under a discrete uniform distribution).
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Border region – no centers can be placed here

radius

Centers of tangent disks 
can be placed here

Centers of tanget disks 
can’t be placed here

Figure 5. A disk with a center further than 3·r from the edge of the sensor region
can have a tangent disk placed at many spots around the disk. However, a disk
with a center closer than 3 · r from the edge of the sensor region will have fewer
positions where a tangent disk can be placed. Each disk in the sensor field pictured
here has a ring around it. Each point in the ring is a point where a tangent disk
could be centered. Note, however, that not all of the points in a ring are within
the region where centers can be placed.

The number of tangency points around the average discrete disk in our sensing region will be lower
then the number of tangency points around a discrete disk which is further than 3 · r from any
edges.

Then, for a sensor field Ω of height x and width y,

Cr =
(x · y − (y − 4 · r) · (x− 4 · r)) · α+ (y − 4 · r) · (x− 4 · r) · β

A(Ω)

where

• α denotes the average number of tangency points for a disk with center between r and 3 · r
from the edge

• β denotes the number of tangency points for a disk with center further than 3 · r from the
edge

• A(Ω) denotes the total area of the sensing region Ω

With this we can correct for edge effects, but corner effects are left unchecked (a disk in a corner
has even fewer tangency points then a disk simply near an edge). However, for reasonably large
sensor grids, corner effects will have negligible effect.

For example, in the case of disks of radius 6 there are 88 points around a disk with a center
further than 18 units from the edge where the center of a second identical disk can be such that
the second disk causes a tangency with the first disk. This is shown by the white ring around the
discrete disk of radius 6 in Figure 6.
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r = 6 discretized disk, 
with integer center

One of 88 points where another 
r = 6 disk could be centered as 
to be tangent to the center disk

Figure 6. For disks of radius 6, the white ring contains 88 points where a disk’s
center can be placed, such that that disk causes a tangency with the center disk.

Then, the expected number of tangencies amongst the n disks is

E

1

2

n∑
i=1

n∑
j=1
i6=j

Tij


where we need to divide by two to prevent double counting because if disk i is tangent to disk j,
then disk j is tangent to disk i. Then by linearity of expectation,

E

1

2

n∑
i=1

n∑
j=1
i 6=j

Tij

 =
1

2

n∑
i=1

n∑
j=1
i 6=j

E (Tij)

Then, because the disks’ centers are independently and identically distributed random variables,
we can simplify this expression to get

=
1

2
n · (n− 1) Pr(Tij = 1)

for any i 6= j. Substituting in (2.4), we find

E

1

2

n∑
i=1

n∑
j=1
i 6=j

Tij

 =
n · (n− 1)

2

Cr
(x− 2r + 2)(y − 2r + 2)

(2.5)

Then, recalling that a first order approximation of En would be to take the number of tangencies
(2.5) as an estimate for the number of errors,

En ≈
n · (n− 1)

2

Cr
(x− 2r + 2)(y − 2r + 2)

.

Experimental results (Table 2) suggest equation (2.5) holds as an approximation to the number
of errors as long as targets (disks in this case) are not too densely packed allowing for many higher
order errors to occur; but this approximation still becomes poor very fast.

So we need to find the next set of second order errors.
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0
1

1

+1 error

(a) 2 targets,
∫
Ω h dχ = 1

0
2

1

+1 error

(b) 3 targets,
∫
Ω h dχ = 2

0
1

1
2
1

+1 error

(c) 3 targets,
∫
Ω h dχ = 2

0

1
1

2
1

1
2

+1 error

(d) 4 targets,
∫
Ω h dχ = 3

0
1

1
2
1

1
2
1

+1 error+1 error

(e) 5 targets,
∫
Ω h dχ = 3

Figure 7. Above are the height functions returned by 5 different sensor fields,
and their Euler characteristic integrals.

2.5. Second order approximation. Recall that the probability that two particular disks i and j
are tangent is Pr(Tij = 1). Similar to first order errors, by “second order errors,” we mean, roughly,

errors occurring with probability proportional to Pr(Tij = 1)
2
.

Theorem 2.2 (Second order error approximation formula). For simplicity we assume a disk radius
of 6. As above, we let C6 denote the average number of tangency points for a radius 6 disk. We also
let Â = (x− 2r + 2)(y − 2r + 2) be the area of the region where disk’s centers can be placed. Recall
that En denotes the expected value for the numbers of errors in target enumeration when using the
Euler characteristic integral approach. Then, a second order estimate of En is given by

(2.6)
C6

c2

((
1− c

Â

)n
· Â− Â+ nc

)
where c is a proportionality constant and when the conditions assumed in the beginning of Section
2 are met.

As a first step towards proving Theorem 2.2, let’s calculate the Euler characteristic integral of a
few different sensor fields to get a feel for how errors accumulate. See Figure 7.

In 7a, there is one tangency and one error. In 7b, however, there are two tangencies but still only
one error. The third disk put down over the second discriminates itself by creating an additional
connected component in the {h = 2} level set. This is the key insight in our derivation of Theorem
2.2: going from 7a to 7b, the total number of errors does not increase. Appropriate generalizations
also apply. We can shift the 3rd disk (see 7c), and as long as it still discriminates itself against
the 2nd disk the 3rd disk’s tangency with the first disk does not lead to an error. Note similar
phenomena in 7d and 7e.

On our way to proving Theorem 2.2, the above first suggests the following lemma.



12 SAM KRUPA

0
1

1

Figure 8. Around this cluster of targets, in our second order approximation with
the left “center” disk held fixed with h = 1, there are on average (for the 88
possible positions of the second disk) c = 21.455 positions where a third disk could
be centered such as to be tangent with the center disk, but not cause an error
by being discriminated by the second disk. The dots represent a few of these
“good points.”

Lemma 2.3. Assume we are given a discrete sensor field. Then n disk-shaped targets of radius 6
are discretely and uniformly placed over it as assumed in the beginning of Section 2. Then,

(2.7) En ≈ En−1 +
(n− 1)C6

Â
− c · En−1

Â

Proof. Put down the first target,

E1 = 0

Put down the 2nd target, and there is one target it can come tangent to,

E2 =
C6

Â

Put down the 3rd target and there are two targets it can come tangent to in such a way as to create
an error, remembering that some tangent positions will also cause the 3rd target to be discriminated.
The number of such positions is related to the number of tangencies already present, the expected
number of which we already calculated above. So,

E3 ≈
C6

Â
+

2 · C6

Â
− c · (previous number of tangencies)

Â
,

by the uniform distribution of target centers, and where c is a proportionality constant. We are
subtracting off from the probability that the 3rd target creates a tangency, the probability that the
3rd target does not create an error, for as noted going from 7a to 7b the number of errors does not
increase.

E3 ≈ C6

Â
+

2 · C6

Â
− c

(
C6

Â2

)
=

3 · C6

Â
− c

(
C6

Â2

)
For radii of 6, and given two tangent disks, there are on average (for the 88 possible setups, with

a “center disk” held fixed) 21.455 points where a case such as either 7b or 7c can occur, so we take
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c = 21.455 for second order errors (see Figure 8). The value 21.455 is an exact value calculated by
an exhaustive search of all possible points for a third disk, averaged over all 88 possible setups.

Next, put down the 4th target. Note that in our second order-error world, E3 equals the number
of 7a, 7b, or 7c type situations that are expected to occur. We take each of these situations
represented by E3 to have on average c = 21.455 points around them where another disk can be
centered such as to not cause an error, while still causing a tangency (see Figure 8). So, as part of
calculating the expected number of errors, when calculating the number of tangencies adding a 4th
target is expected to create, we subtract off the probability of one of these tangencies being created
by the 4th disk being centered at one of the c · E3 “good points.” So,

E4 ≈ E3 +
3 · C6

Â
− c

(
E3

Â

)
=

6 · C6

Â
− 4c · C6

Â2
+
c2C6

Â3

What we are studying here is the case where a “center” disk is held in a fixed position, has a
height function of 1, and there is a 2nd disk tangent to this center disk. A 3rd disk tangent to the
center disk can be sufficiently near the first tangency such as to not cause an error – so that this
one grouping of three disks results in only one error. A fourth disk can be brought in tangent to
the center disk, but still discriminate itself against the second or third disk. This one grouping still
only contains one error.

There can be two tangencies to the first center disk which don’t interact, and this creates two
separate groupings, each accounting for one error (see Figure 7e).

In summary, note how each tangency creates a hotspot around which tangencies can cluster with
only the first one counting as an error. These spots are what we are counting. En is a count of these
groupings, as each grouping equals one error, so when we want to predict how many “good” tangent
spots there will be for the (n+ 1)th target to land, we know it will be approximately proportional
to En. Continuing in this way,

E5 ≈ E4 +
4 · C6

Â
− c

(
E4

Â

)
=

10 · C6

Â
− 10c · C6

Â2
+

5c2C6

Â3
− c3C6

Â4

Finally,

En ≈ En−1 +
(n− 1)C6

Â
− c · En−1

Â
which is (2.7). �

Continuing on with our proof of Theorem 2.2, note that (2.7) is a first order linear inhomogeneous
recurrence relation with variable coefficient(s). This class of recurrence relations has an elegant
solution [14], given by the following lemma.

Lemma 2.4 ([14]). The solution to a general first order linear inhomogeneous recurrence relation
with variable coefficients in the form an+1 = fnan + gn , fn 6= 0 is given by

an =

(
n−1∏
k=0

fk

)(
a0 +

n−1∑
m=0

gm∏m
k=0 fk

)
for n ≥ 1,(2.8)

where a0 is the initial term in the sequence a0, a1, a2, . . . .
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Proof. The starting point for this derivation is an+1 = fnan + gn , fn 6= 0. We subtract one term

and divide by

n∏
k=0

fk,

an+1∏n
k=0 fk

− fnan∏n
k=0 fk

=
gn∏n
k=0 fk

an+1∏n
k=0 fk

− an∏n−1
k=0 fk

=
gn∏n
k=0 fk

Let

An =

{
an∏n−1
k=0 fk

if n ≥ 1

a0 if n = 0

Then,

An+1 −An =
gn∏n
k=0 fk

n−1∑
m=0

(Am+1 −Am) = An −A0 =

n−1∑
m=0

gm∏m
k=0 fk

an∏n−1
k=0 fk

= A0 +

n−1∑
m=0

gm∏m
k=0 fk

an =

(
n−1∏
k=0

fk

)(
A0 +

n−1∑
m=0

gm∏m
k=0 fk

)
,

which is (2.8), the result we desired.
�

We are now ready to prove Theorem 2.2.

Proof. In (2.8) take an = En = En−1

(
1− c

Â

)
+ (n−1)C6

Â
, then substitute n 7→ n+ 1 in this relation

to get an+1 = En+1 = En

(
1− c

Â

)
+ nC6

Â
. Then we compare this equation with an+1 = fnan + gn ,

and take fn =
(

1− c
Â

)
and gn = nC6

Â
. Finally, noting that A0 = 0 as a0 = 0 (if no targets are put

down, there are no errors), we plug what we know into (2.8) to get,

En ≈
(

1− c

Â

)nn−1∑
m=0

mC6

Â(
1− c

Â

)m+1

(2.9)

=
C6

Â
·
(

1− c

Â

)n−2 n−1∑
m=1

m

(
1

1− c
Â

)m−1

(2.10)
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This is in the form of

n∑
k=1

krk−1, a solution to which can be found by differentiating the standard

geometric series formula with respect to r,

n∑
k=0

ark =
a(1− rn+1)

1− r

d

dr

n∑
k=0

rk =

n∑
k=1

krk−1 =
1− rn+1

(1− r)2
− (n+ 1)rn

1− r
(2.11)

Applying (2.11) to (2.10) gives, after some algebra,

En ≈
C6

c2

((
1− c

Â

)n
· Â− Â+ nc

)
which is a simple solution to our recurrence relation (2.7), and is the desired result Theorem 2.2.

�

2.6. Asymptotic Behavior. Given an understanding of how errors in target enumeration accu-
mulate for small n, the question then arises, how does Theorem 1.2 behave for large n? In answering
this question, a connection arises to a problem in probability called the coupon collector’s problem.
Given a set of p coupons of all different types, how many coupons does the coupon collector expect
to need to draw with replacement before having at least one copy of each type of coupon? A similar
question is, “How many coupons does the coupon collector expect to need to draw with replacement
before having at least q copies of each type of coupon?” A solution to this more difficult multiple
coupon problem is given by [16]. The link between this multiple coupon problem and Euler char-
acteristic integrals is seen if we note that for some integer s the {h = s} level set covers all of our
sensor field Ω, then by Theorem 1.2 this level set contributes s units to the target enumeration
count. If, for instance, each sensor in a sensor field picks up 10 targets, then the {h = 10} level
set will cover all of Ω, and Theorem 1.2 will return a target count of 10. In [16] it is shown that
for large q, the expected number of coupons the coupon collector needs is asymptotic to pq by the
law of large numbers. Recall that our sensor field is a subset Ω ⊂ R2 and n targets are placed on
our sensor field uniformly and discretely. Thus, for a regular grid of sensors that is x sensors long
and y sensors wide, and for targets that are the same shape and size of the sensors and discretely
and uniformly placed over the centers of sensors, this is saying that in the limit as n→∞, every
xy targets placed over the sensor field increases by one the number of the highest level set that is
expected to cover all of Ω. Then, in the limit as m→∞ if you put down mxy targets, you would
expect the {h = m} level set to cover Ω, which would account for mxy targets, leaving a total of
mxy−mxy = 0 targets to fill the higher level sets. In other words, our examination shows that, in
the limit as m→∞, if you put down mxy targets, the highest non-empty level set of h covers Ω,
and all higher level sets are empty and do not contribute to the Euler characteristic integral.

Theorem 2.5 (Asymptotic behavior of sensor fields). For any sensor field (in a region Ω), and for
any (fixed) target shape, let h′ be the height function which is the return of the sensor field when
each sensor has a target centered over it. Let H =

∫
Ω
h′ dχ. Let α be the number of sensors in our

sensor field. Then when n targets are uniformly and discretely put down on our sensor field, where
n = m · α for some positive integer m, and where h is the height function coming off this sensor
field, we have
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E

(∫
Ω

h dχ

)
= Hm, as n→∞(2.12)

Proof. This follows from (2.1) and the above reasoning in this section (Section 2.6). Note that
when we put down m · α targets, in the limit as m→∞ we expect each sensor to have m targets
above it. Thus, in the limit E(h) = m · h′. Then by (2.1)

∫
Ω
m · h′ dχ = m

∫
Ω
h′ dχ = Hm. �

2.7. Higher order error estimates and some applications. To improve our second order error
estimate, we try to force the error formula to be asymptotically correct (see Theorem 2.5).

Let fc(n) =
(
n− C6

c2

((
1− c

Â

)n
· Â− Â+ nc

))
. If we take the limit of fc(n) as n→∞, then

lim
n→∞

(
n− C6

c2

((
1− c

Â

)n
· Â− Â+ nc

))
=

lim
n→∞

(
n ·
(

1− C6

c

)
+
Â · C6

c2

)
,

when 0 < c < Â. Then, to force the asymptotic result (2.12), we let

c =
C6

1− H
α

(2.13)

such that

lim
n→∞

(
n− C6

c2

((
1− c

Â

)n
· Â− Â+ nc

))
=

Hm+O(1), as n→∞

which is in agreement with (2.12) up to a constant term. Then, note that fc(n) increases as c
increases, such that fc(n) increases when H

α increases. Thus, H
α represents how poorly our targets

clump together – the quantity H
α is a measure of the “clumpiness” of our targets, or how poorly

our targets overlap each other when placed near each other. A large H
α value means targets do not

clump together well. Targets that clump together more easily lead our expected Euler characteristic
integral to decrease, while targets which clump together less easily would make for larger expected
Euler characteristics. For instance, targets which are 1 × 1 squares would, when placed down
densely on a discrete sensor grid, meld together and become impossible to differentiate, such that
the quantity H

α would be small. For targets which have more complex geometries, such as discrete

disks, we would expect H
α to be larger.

We find that (2.6) with c = C6

1−Hα
acts a good estimate of the expected value of the Euler

characteristic integral. For values of n ranging from 100 to 10 000, we simulated, for each n, 1 000
sensor fields of dimension 500 × 500, where on each field n radius 6 targets were placed down
discretely and under a uniform distribution. Then, for each random sensor field we calculated its
Euler characteristic integral, and averaged our observed values of the integral for each n (average
of 1 000 trials). Then, in order to calculate the expected Euler characteristic integral for each n,
we first calculated H by constructing a 500 × 500 sensor field with a disk centered at each of the
240 100 points sufficiently far from the boundary, and then integrating over this field. This process
gives H = 109.
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See Table 2 and Figure 12 for a comparison of our expected Euler characteristics to the observed
numerical results. Observed data were generated from a virtual sensor field environment created
in GNU Octave [6]. We find that with c = C6

1−Hα
, our second order error estimate formula (2.6)

behaves excellently for large n, excellently for small n (when fc(n) is insensitive to the value of c),
and it behaves acceptably for midrange values of n.

In order to derive an improved point estimator for n, we note that for a fixed target radius and
a fixed sensor field area, and with C6 ≤ c < Â, the function defined by taking n to the value given
by

(2.14) n− C6

c2

((
1− c

Â

)n
· Â− Â+ nc

)
is injective.

Arguing by contradiction, we assume there are n1 and n2, n1 6= n2, and n1 > n2, such that,

n1 −
C6

c2

((
1− c

Â

)n1

· Â− Â+ n1c

)
= n2 −

C6

c2

((
1− c

Â

)n2

· Â− Â+ n2c

)
then

(n1 − n2)

Â

(
c2

C6
− c
)

︸ ︷︷ ︸
≥0 by assumptions

=

(
1− c

Â

)n1

−
(

1− c

Â

)n2

︸ ︷︷ ︸
<0 by assumptions

which under our assumptions (C6 ≤ c < Â and n1 > n2) is a contradiction. Therefore, n1 = n2

and the function which takes n to the value given in (2.14) is injective.
Thus, given an observed value nobs of

∫
R2 h dχ, we can solve

(2.15) nobs = n̂− C6

c2

((
1− c

Â

)n̂
· Â− Â+ n̂c

)
numerically for n̂, and obtain a better estimate n̂ for n than simply nobs. As (2.6) is approximately
unbiased, this method of obtaining an improved estimate of n is also approximately unbiased.

Here is one immediate application of the work presented thus far. Imagine a box which has
along its bottom a sensor field as described in this paper (made up of a regular grid of sensors).
Under the center of each sensor is a magnet. Then, drop a handful of disk-shaped magnets into
the box. The magnets under the sensors will attract the disks, and the disks will appear to fall
into the box under a discrete uniform distribution (we imagine here that the sides of the box are
inelastic, so that disks don’t bounce off the sides). Then, the Euler characteristic integral will give
us an approximation for the number of disks in the box. We can then shake the box, and arrive at
a new uniform distribution of targets, and a new value of the Euler characteristic integral. We can
repeat this process many times, calculating a new value of the Euler characteristic integral each
time. Then, we can average our Euler characteristic integral values, and plug this average into
(2.15) as our nobs. This will give us a value n̂, which will be a very close estimate for the true
number of disk-shaped magnets that are in the box! Note that this process works no matter how
many, or how few sensors are at the bottom of the box (many, many, small sensors would work,
and so would a few large sensors).

Looking to expand our assumptions, an interesting case is when the targets’ centers are con-
tinuously placed on our discrete sensor field – a much more useful application than the discrete
placement case. Imagine, for example, a discrete sensor field in front of you. You drop a pile of
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Figure 9. This is the level set generated from two disks of radius 6 falling onto
a discrete sensor field with continuous placement of their centers. New behavior
arises in this case. Here

∫
Ω
h dχ = 0, which does not occur with discrete placement.

quarters onto it. Almost surely, not a single quarter will land with its center exactly at a point
where four sensors meet; each quarter has the opportunity to drift in one direction or another. The
slightest perturbation in a quarter’s center coordinate away from an integer will cause it to land on
sensors such as to distort its perceived shape and cause new and unforeseen errors (see Figure 9).
Research needs to be done into this continuous placement case.

Looking to further expand past our assumptions, the case when r > 7 is most interesting.
With r > 7 disks placed discretely on a discrete sensor field, more than simple tangencies can
occur. Discretized disks of larger radii can exhibit concave behavior when two identical disks join
in certain precise ways to create a single element in the level sets with an Euler characteristic of
zero. Larger disks can also exhibit another type of “locking behavior” where two disks join together
to have an integral with respect to the Euler characteristic of three (see Figure 10). The number
of positions around a disk that another disk’s center can be placed to cause these different effects
varies from radius to radius, and no pattern seems to emerge (see Table 1 and Figure 11).

An analysis similar to that done for radii less than 8 should be applicable to greater radii.

(a)

2 targets of radius 8,∫
Ω h dχ =

0

(b)

2 targets of radius 8,∫
Ω h dχ =

3

(c)

2 targets of radius 10,∫
Ω h dχ =

0

(d)

2 targets of radius 10,∫
Ω h dχ =

3

Figure 10. Above are examples of the ways targets of radii > 7 can join together
to create different types of errors when evaluating

∫
Ω
h dχ over a discrete sensor

field.
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Error Type Error Type
radius 0 1 3 radius 0 1 3
1 0 8 0 51 168 584 80
2 0 24 0 52 152 600 88
3 0 40 0 53 112 584 96
4 0 56 0 54 136 576 88
5 0 72 0 55 120 632 80
6 0 88 0 56 200 600 96
7 0 104 0 57 176 632 112
8 8 112 8 58 248 632 112
9 0 136 0 59 176 632 88
10 16 136 16 60 200 696 112
11 8 160 8 61 184 624 120
12 8 176 8 62 176 680 112
13 16 176 16 63 192 672 104
14 8 208 8 64 248 704 112
15 24 200 24 65 216 744 88
16 16 224 16 66 192 688 96
17 32 208 32 67 184 720 88
18 40 248 32 68 280 728 152
19 16 272 16 69 224 712 136
20 32 256 32 70 208 752 128
21 16 288 16 71 200 704 112
22 56 280 48 72 184 736 112
23 40 312 32 73 280 768 112
24 32 320 32 74 184 768 104
25 48 304 48 75 328 752 152
26 56 344 48 76 208 752 128
27 72 336 56 77 232 824 120
28 48 352 48 78 288 792 128
29 32 376 32 79 216 792 112
30 72 392 48 80 264 768 128
31 48 408 40 81 304 856 128
32 88 416 48 82 248 832 152
33 48 400 56 83 320 840 152
34 72 408 48 84 240 848 128
35 88 424 64 85 376 888 136
36 56 440 56 86 312 864 152
37 96 440 56 87 352 832 168
38 72 472 48 88 264 864 136
39 136 456 80 89 224 856 152
40 104 488 64 90 336 888 160
41 80 488 72 91 336 920 176
42 96 504 48 92 320 872 160
43 56 536 56 93 304 944 120
44 144 512 80 94 376 952 152
45 104 544 64 95 368 912 184
46 152 496 88 96 352 960 152
47 152 552 88 97 344 904 168
48 96 536 80 98 400 1008 128
49 136 520 104 99 448 912 200
50 112 632 72 100 408 952 184

Table 1. For varying radius and discrete placement with integer centers, the
above table gives the number of positions around a discrete disk where, when
another identical disk is placed there,

∫
R2 h dχ =0, 1, or 3 (which we call type 0,

1, or 3 errors).



20 SAM KRUPA

0

200

400

600

800

1000

1200

0 20 40 60 80 100

n
u
m

b
er

of
p

o
si

ti
on

s

radius

type 0 errors
type 1 errors
type 3 errors

Figure 11. A plot of table 1.

3. Conclusion

The main result in this paper is Theorem 2.2, which gives an approximation to the bias of the
Euler characteristic integral as a point estimator for n, the number of targets over a discrete sensor
field. Numerical results show that Theorem 2.2 agrees closely with observations.

But this is just a preliminary analysis, and there is still much to be done. There are also many
constraining assumptions we made here which are ripe for relaxing. Areas of further research might
include looking into,

• Disk-shaped targets with radii greater than 7.
• Formalizing what we mean when we say “first order,” “second order,” or “higher order”

approximations.
• Finding exact upper and lower bounds on the expected value of the Euler integral.
• Disk-shaped targets with radii that are not integer multiples of the side length of our

sensors.
• The discrete Euler integral’s complete probability distribution, or even just its variance.
• A generalization of the numerical analysis theory to any distribution of targets.
• A generalization to any target shape (and not just 2-d projections of discrete disks!).
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(a) Plot of observed values.
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(b) Plot of our best estimates.
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(c) Plot of observed values overlaid our best estimates.

Figure 12. Plots of Table 2: observed values of the Euler integral alongside our
best estimates from (2.6) (Theorem 2.2) with c = C6

1−Hα
.
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n observed Formula (2.5) Formula (2.6),
c = 21.455

Formula (2.6),
c = C6

1−Hα

100 98.294 98.25 98.2 98.3
200 193.12 192.95 193.0 193.1
300 284.72 284.05 284.2 284.6
400 373 371.65 372.0 372.9
500 458.5 455.65 456.3 458.2
600 541.04 536.15 537.3 540.4
700 619.55 613.05 614.8 619.8
800 697.11 686.45 689.1 696.4
900 771.23 756.25 760.0 770.4
1 000 843.67 822.5 827.7 841.8
2 000 1 446.2 1 289.65 1 330.1 1 431.8
3 000 1 881.5 1 401.4 1 535.1 1 845.4
4 000 2 178.9 1 157.85 1 468.1 2 135.3
5 000 2 390.0 558.9 1 152.4 2 338.7
6 000 2 524.1 -395.4 609.1 2 481.3
7 000 2 611.1 -1 776.6 -142.1 2 581.4
8 000 2 663.2 -3 370.1 -1 083.6 2 651.6
9 000 2 689.8 -5 390.5 -2 199.1 2 701.0
10 000 2 703.2 -7 766.25 -3 473.7 2 735.8

Table 2. For a 500 × 500 discrete sensor field with n radius 6 disks put down
uniformly and discretely, the observed value (averaged over 1 000 trials for each
n) of

∫
R2 h dχ is presented, along with E

(∫
R2 h dχ

)
calculated using the first order

(2.5) and then the second order (2.6) (Theorem 2.2) with the second order value
c = 21.455 and with the higher order value c = C6

1−Hα
. For this region, C6 = 85.322.

• Generalizations to multiple target shapes on the same field.
• Non-regular sensor grids.
• The error tolerance and stability of the discrete integral in the face of noisy data, broken

sensors, or other real world problems. Future work should include a numerical analysis of
the theoretical work done on the Euler characteristic integrals of Gaussian random fields
[3].

• The techniques for discrete Euler integral analysis and signal processing suggested in [1, 2]
• Improving our target enumeration estimate by analysis of time series data for moving

targets, similar to [19].
• Extending the work done here to targets that are continuously placed onto a sensor field,

as opposed to discretely placed with integer center coordinates.

Possible applications of any numerical analysis will require additional work. All theory discussed
in this article has been based on a priori knowledge of target shape and target distribution. This
suggests possible areas of research into relaxing of these requirements in some way. We should try
to determine estimates for these parameters from the data we are given – a sensor field.
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